
Chieh-Fu Chang, Che-Wei Chang, Yuan-Hao Chang, and Ming-Chang Yang

Chieh-Fu Chang
Research Assistant, Institute of Information Science,

Academia Sinica, Taiwan

Rethinking Self-balancing Binary
Search Tree over Phase Change
Memory with Write Asymmetry

ASP-DAC 2018

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
2

The Needs of Huge Memory/Storage

• Big data and data mining applications require huge
storage
– Store huge amount of data
– In-memory computing

• DRAM and NAND Flash are hitting the wall of its
transistor scaling*
– Density limitation
– High power consumption

- Leakage power
- Operation power

3

∗ : B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable DRAM alternative. In The International Sympo-
sium on Computer Architecture (ISCA), 2009.
H. Zheng and Z. Zhu. Power and performance trade-offs in contemporary DRAM system designs for multicore processors. IEEE Transactions
on Computers, 59(8), 2010. http://moneydj-blog.s3.amazonaws.com/wp-content/uploads/sites/33/2016/01/29150028/a8558c71-978c-75c2-7a79-2e82f5a5889a.jpg

Non-volatile Memory

• Phase-change memory and 3D Xpoint
– High density
– Low leakage power
– Non-volatility

• Features of 3D Xpoint
– 1000X faster than NAND
– 1000X more endurance of NAND
– 10X higher density than DRAM

4https://www.slideshare.net/Syntech/intel-micron-unveil-breakthrough-3d-xpoint-memory-tech-a-revolutionary-breakthrough-in-memory-technology

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
5

Phase Change Memory (PCM)

• Physical structure and mechanisms
– Two phases :

- The amorphous phase with high resistance
- The crystalline phase with lower resistance

• Advantages
– High density
– Non-volatility
– Low power consumption
– Outstanding I/O performance
– Byte addressability

6X. Zhang et al., “WoM-SET: Lowering write power of proactive-SET based PCM write strategy using WoM code,” in Proc. Intl. Symposium on Low Power Electronics and Design, 2013.

Issues of Using PCM

• Write Asymmetry
– Reset

- High instant power with short time
– Set

- Low power with long time

• Write Latency
• Write Endurance

• Suggested Solution?
– Reducing #write bits

7X. Zhang et al., “WoM-SET: Lowering write power of proactive-SET based PCM write strategy using WoM code,” in Proc. Intl. Symposium on Low Power Electronics and Design, 2013.

Relative Works

• Data-Comparison Write (DCW)
– Read the old (stored) data.
– Do comparison with the new data.
– Skip any bit write if it is not needed.

• Coset Coding
– Provide a one-to-many mapping for each data word to a

(co)set of vectors.
– Choose the vector with the minimum overhead for each

write.

8

Motivation

• Big/massive data applications demand extremely large
main memory space for better performance.

• PCM has low leakage power and high density which
make it a promising candidate to replace DRAM.

• Write endurance and latency are critical for using PCM.
• Existing studies improve the write mechanism to handle
the given write patterns on PCM.

Why don’t we fundamentally generate more
suitable write patterns for PCM
• By improving address allocation for data structures

9

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
10

AVL Tree

• The properties of an AVL tree (for n data nodes)
– The average and worst-case space utilization: 𝑂𝑂(𝑛𝑛)
– The average and worst-case time complexity of tree

search, insertion, update and deletion: 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛)

• The expense for having the above properties
– Tree Rotations

- Conducting a rotation if the height difference of the left and
right sub-trees is more than one level.

– Multiple Update Writes
- For each rotation, there are multiple update writes of

pointers.
- It could exacerbate the endurance and latency issues on

PCM.
11

An Overview of Our Design

• Tree rotation analysis is conducted to better
understand the relation among nodes.

• Our DFAT algorithm is developed to find the node
relation path with the consideration of possible tree
rotations.
– The Gray code technique is leveraged to minimize the

distance of two given address values in the address
sequence that we use to map to our node relation path.

– An address conflict manager is proposed to resolve
possible address conflicts caused by rotations.

12

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
13

Four Types of AVL Tree Rotations

14

Relation among Nodes in an RR
Rotation

Our Idea: Assign nodes B & D with close addresses!
15

AVL tree

……
…

D

B

E

Before

A

C

After

&B &D

RR Rotation

Pointer Update:

Relation Paths of Tree Nodes

16

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
17

Depth-First-Alternating Traversal
(DFAT)

• A systematic approach for indexing all nodes, where nodes
having stronger relations will be assigned closer indexes.

18

77

6

2 5

10 4 3

8

9

11 10

12

13 14

Leveraging Gray Code on DFAT

• Gray code: An ordering of the binary numeral system such that
two successive values have the shortest distance (differ in only
one bit).

19

7

6

2 5

10 4 3

8

9

11 10

12

13 14

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110
Index 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Gray Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1100 1101 11101011

A Running Example Of Our Solution

20

AVL tree

……
…

D

B

E

Before

A

C

After

&B &D

RR Rotation

A
C
B
D
E

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
21

Node Address Collisions

• The problem of address collisions
– The address of a to-be-inserted node might be used

because there are rotations.

• Our address conflict manager
– Build a redundant queue for keeping some addresses.
– Put free and can-not-be-used (by DFAT) addresses into

the redundant queue after a tree rotation.
– Select one free address from the redundant queue when

there is an address collision during an insertion.

22

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
23

Experimental Setup (1/2)

• The experiment was conducted in a simulator we
made to evaluate the proposed solution with
different numbers of data items and different sizes
of address space.

• The random permutation of the data array is used
as the input data, and we sequentially insert the
data items into an AVL tree.

• For the input size of N nodes, we reserve memory
space for an AVL tree of L + 2 levels, where
𝐿𝐿 = ⌈log₂(𝑁𝑁 + 1)⌉.

24

Experimental Setup (2/2)

• We assign an address to each to-be-inserted node
by the following solutions
–Random: randomly selects an available address.
–Linear: sequentially selects an available address,

and the address value starts at 0.
–Gray: uses the original tree indexes and leverages

the Gray code technique to assign an address for
each node.

–DFAT-Gray: is our solution which indexes all nodes
by the DFAT algorithm and leverages the Gray code
technique to assign an address for each node.

25

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
26

Result of Solutions with Different
Data Sizes (1/2)

27

• Linear : is the best solution when the memory space ≤
210.

• DFAT-Gray : outperforms the other solutions when the
memory space > 210.

Result of Solutions with Different
Data Sizes (2/2)

• The percentage of bit flips =
• When the number of bits in a pointer increases

– The bit-flip ratios of Linear and Gray increase.
– The bit-flip ratio of DFAT-Gray decreases noticeably.

28

number of bit bit flips per write
number of bits in a pointer

Result of Simulation for Huge
Memory (1/2)

• We consider 218−1< memory space < 236−1, but the data
size is fixed at 216 for fast simulation.

• Random significantly increases the number of bit flips per
change along with the memory space getting larger.

29

Result of Simulation for Huge
Memory (2/2)

• Gray and Linear: have a stable performance with the fixed
input data size

• DFAT-Gray: increases its bit flips ratio slightly when the
memory space increases from 218 to 222, and then gets
saturated.

30

Outline
• Introduction
• Background and Motivation
• Write-Asymmetry-Aware Self-Balance Tree

– Basic Concepts
– Analysis of Tree Rotations
– Depth-First-Alternating Traversal
– Address Conflict Manager

• Evaluation
– Experimental Setup
– Experimental Results

• Conclusion
31

Conclusion

• We redesign the memory allocation scheme of a
self-balancing binary search tree for PCM.

• DFAT-Gray on AVL trees can reduce more than
15% of bit flips when the size of the input data is
more than 215 − 1 nodes.

• Further extending our concepts to other relative
data structures is our ongoing studies.

32

33

Thanks for Listening!
Q&A

Appendix

• Solutions
– DFAT
– Gray

• Collision Issue
– Redundant Queue

• Experiment Setup
– Running Environment

• Exceeded Tree Nodes

34

Solution - DFAT

• Traversal start from the Root
– Turn left for the step 1.
– After step 1, choose a direction opposited to the previous

way.

35

7

6

2 5

10 4 3

8

9

11 10

12

13 14

Analysis of Time Complexity

36

Solution - Gray

• Simply links tree nodes by the order of original tree
index to build the path.

• A solution which leverages Gray code without
DFAT algorithm.

37

1

2

4 5

98 10

3

6

11 12

7

13 14 15

Experiment Setup

• Running Environment
– Visual Studio VC++ 2017 v141
– Microsoft Windows 10 x64
– Intel i5-2400 processor
– 16 GB DRAM

38

Collision Issue

• The target address already taken by previous inserted
node which was switched to other space after tree
rotation

• Redundant queue
– After tree rotations, put all unoccupied node addresses

into the redundant queue.
– Select one node address from the queue when collisions

occur
– In this way, we can avoid any node collisions caused by

the way of using greedy searching algorithm

39

Exceeded Inserted Nodes

• When a depth of a inserted node is deeper than the
given depth of tree map(before a tree rotation)
– This kind of situation would only happen at bottom of the

tree, and most of the tree spaces at bottom are barely
used

– Solution
- Allocate a address after rotation if the node will rotate back

into the allocated space.
- If not, directly allocate a valid node which is close to it’s

parent’s node.

40

	スライド番号 1
	Outline
	The Needs of Huge Memory/Storage
	Non-volatile Memory
	Outline
	Phase Change Memory (PCM)
	Issues of Using PCM
	Relative Works
	Motivation
	Outline
	AVL Tree
	An Overview of Our Design
	Outline
	Four Types of AVL Tree Rotations
	Relation among Nodes in an RR Rotation
	Relation Paths of Tree Nodes
	Outline
	Depth-First-Alternating Traversal (DFAT)
	Leveraging Gray Code on DFAT
	A Running Example Of Our Solution
	Outline
	Node Address Collisions
	Outline
	Experimental Setup (1/2)
	Experimental Setup (2/2)
	Outline
	Result of Solutions with Different Data Sizes (1/2)
	Result of Solutions with Different Data Sizes (2/2)
	Result of Simulation for Huge Memory (1/2)
	Result of Simulation for Huge Memory (2/2)
	Outline
	Conclusion
	スライド番号 33
	Appendix
	Solution - DFAT
	Analysis of Time Complexity
	Solution - Gray
	Experiment Setup
	Collision Issue
	Exceeded Inserted Nodes

