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The Needs of Huge Memory/Storage

• Big data and data mining applications require huge 
storage
– Store huge amount of data
– In-memory computing

• DRAM and NAND Flash are hitting the wall of its 
transistor scaling* 
– Density limitation
– High power consumption

- Leakage power
- Operation power
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∗ : B. C. Lee, E. Ipek, O. Mutlu, and D. Burger. Architecting phase change memory as a scalable DRAM alternative. In The International Sympo-
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on Computers, 59(8), 2010. http://moneydj-blog.s3.amazonaws.com/wp-content/uploads/sites/33/2016/01/29150028/a8558c71-978c-75c2-7a79-2e82f5a5889a.jpg



Non-volatile Memory 

• Phase-change memory and 3D Xpoint
– High density 
– Low leakage power
– Non-volatility

• Features of 3D Xpoint
– 1000X faster than NAND
– 1000X more endurance of NAND
– 10X higher density than DRAM

4https://www.slideshare.net/Syntech/intel-micron-unveil-breakthrough-3d-xpoint-memory-tech-a-revolutionary-breakthrough-in-memory-technology
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Phase Change Memory (PCM) 

• Physical structure and mechanisms
– Two phases : 

- The amorphous phase with high resistance 
- The crystalline phase with lower resistance

• Advantages
– High density
– Non-volatility 
– Low power consumption
– Outstanding I/O performance
– Byte addressability 

6X. Zhang et al., “WoM-SET: Lowering write power of proactive-SET based PCM write strategy using WoM code,” in Proc. Intl. Symposium on Low Power Electronics and Design, 2013.



Issues of Using PCM

• Write Asymmetry
– Reset 

- High instant power with short time
– Set 

- Low power with long time

• Write Latency
• Write Endurance

• Suggested Solution?
– Reducing #write bits

7X. Zhang et al., “WoM-SET: Lowering write power of proactive-SET based PCM write strategy using WoM code,” in Proc. Intl. Symposium on Low Power Electronics and Design, 2013.



Relative Works

• Data-Comparison Write (DCW) 
– Read the old (stored) data.
– Do comparison with the new data.
– Skip any bit write if it is not needed.

• Coset Coding
– Provide a one-to-many mapping for each data word to a 

(co)set of vectors.
– Choose the vector with the minimum overhead for each 

write.

8



Motivation 

• Big/massive data applications demand extremely large 
main memory space for better performance.  

• PCM has low leakage power and high density which
make it a promising candidate to replace DRAM.

• Write endurance and latency are critical for using PCM.
• Existing studies improve the write mechanism to handle 
the given write patterns on PCM.

Why don’t we fundamentally generate more
suitable write patterns for PCM
• By improving address allocation for data structures
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AVL Tree

• The properties of an AVL tree (for n data nodes)
– The average and worst-case space utilization: 𝑂𝑂(𝑛𝑛)
– The average and worst-case time complexity of tree

search, insertion, update and deletion: 𝑂𝑂(𝑙𝑙𝑙𝑙𝑙𝑙 𝑛𝑛)

• The expense for having the above properties
– Tree Rotations 

- Conducting a rotation if the height difference of the left and 
right sub-trees is more than one level.

– Multiple Update Writes
- For each rotation, there are multiple update writes of 

pointers.
- It could exacerbate the endurance and latency issues on

PCM.
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An Overview of Our Design

• Tree rotation analysis is conducted to better 
understand the relation among nodes.

• Our DFAT algorithm is developed to find the node
relation path with the consideration of possible tree 
rotations.
– The Gray code technique is leveraged to minimize the 

distance of two given address values in the address
sequence that we use to map to our node relation path.

– An address conflict manager is proposed to resolve 
possible address conflicts caused by rotations.
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Four Types of AVL Tree Rotations
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Relation among Nodes in an RR 
Rotation

Our Idea: Assign nodes B & D with close addresses!
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Relation Paths of Tree Nodes
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Depth-First-Alternating Traversal 
(DFAT)  

• A systematic approach for indexing all nodes, where nodes 
having stronger relations will be assigned closer indexes.
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Leveraging Gray Code on DFAT

• Gray code: An ordering of the binary numeral system such that 
two successive values have the shortest distance (differ in only 
one bit).

19

7

6

2 5

10 4 3

8

9

11 10

12

13 14

0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1011 1100 1101 1110
Index      0 1        2        3         4        5        6        7         8       9      10      11     12      13      14     

Gray Code 0000 0001 0010 0011 0100 0101 0110 0111 1000 1001 1010 1100 1101 11101011



A Running Example Of Our Solution
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Node Address Collisions

• The problem of address collisions
– The address of a to-be-inserted node might be used 

because there are rotations. 

• Our address conflict manager
– Build a redundant queue for keeping some addresses.
– Put free and can-not-be-used (by DFAT) addresses into 

the redundant queue after a tree rotation.
– Select one free address from the redundant queue when 

there is an address collision during an insertion.
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Experimental Setup (1/2)

• The experiment was conducted in a simulator we
made to evaluate the proposed solution with 
different numbers of data items and different sizes 
of address space.

• The random permutation of the data array is used 
as the input data, and we sequentially insert the 
data items into an AVL tree.

• For the input size of N nodes, we reserve memory 
space for an AVL tree of L + 2 levels, where 
𝐿𝐿 = ⌈log₂(𝑁𝑁 + 1)⌉.
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Experimental Setup (2/2)

• We assign an address to each to-be-inserted node 
by the following solutions 
–Random: randomly selects an available address. 
–Linear: sequentially selects an available address, 

and the address value starts at 0.
–Gray: uses the original tree indexes and leverages 

the Gray code technique to assign an address for 
each node.

–DFAT-Gray: is our solution which indexes all nodes 
by the DFAT algorithm and leverages the Gray code 
technique to assign an address for each node.
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Result of Solutions with Different 
Data Sizes (1/2)

27

• Linear : is the best solution when the memory space ≤
210.

• DFAT-Gray : outperforms the other solutions when the 
memory space > 210.



Result of Solutions with  Different 
Data Sizes (2/2)

• The percentage of bit flips =
• When the number of bits in a pointer increases

– The bit-flip ratios of Linear and Gray increase.
– The bit-flip ratio of DFAT-Gray decreases noticeably.

28

number of bit bit flips per write
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Result of Simulation for Huge 
Memory (1/2)

• We consider 218−1< memory space < 236−1, but the data 
size is fixed at 216 for fast simulation.

• Random significantly increases the number of bit flips per 
change along with the memory space getting larger.
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Result of Simulation for Huge 
Memory (2/2)

• Gray and Linear: have a stable performance with the fixed 
input data size

• DFAT-Gray: increases its bit flips ratio slightly when the 
memory space increases from 218 to 222, and then gets
saturated.
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Conclusion

• We redesign the memory allocation scheme of a 
self-balancing binary search tree for PCM.

• DFAT-Gray on AVL trees can reduce more than 
15% of bit flips when the size of the input data is 
more than 215 − 1 nodes.

• Further extending our concepts to other relative 
data structures is our ongoing studies.
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Appendix

• Solutions
– DFAT
– Gray

• Collision Issue 
– Redundant Queue

• Experiment Setup
– Running Environment

• Exceeded Tree Nodes  
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Solution - DFAT

• Traversal start from the Root
– Turn left for the step 1.
– After step 1, choose a direction opposited to the previous

way.
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Analysis of Time Complexity
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Solution - Gray

• Simply links tree nodes by the order of original tree
index to build the path.

• A solution which leverages Gray code without
DFAT algorithm.
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Experiment Setup

• Running Environment
– Visual Studio VC++ 2017 v141 
– Microsoft Windows 10 x64 
– Intel i5-2400 processor 
– 16 GB DRAM 
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Collision Issue

• The target address already taken by previous inserted
node which was switched to other space after tree
rotation

• Redundant queue
– After tree rotations, put all unoccupied node addresses 

into the redundant queue.
– Select one node address from the queue when collisions 

occur
– In this way, we can avoid any node collisions caused by 

the way of using greedy searching algorithm 
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Exceeded Inserted Nodes

• When a depth of a inserted node is deeper than the 
given depth of tree map(before a tree rotation)
– This kind of situation would only happen at bottom of the 

tree, and most of the tree spaces at bottom are barely 
used 

– Solution 
- Allocate a address after rotation if the node will rotate back 

into the allocated space.
- If not, directly allocate a valid node which is close to it’s 

parent’s node.
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