#### **ASPDAC 2018**



# Energy, Latency, and Lifetime Improvements in MLC NVM with Enhanced WOM Code

Huizhang Luo<sup>1</sup>, **Liang Shi<sup>1\*</sup>**, Qiao Li<sup>1</sup>, Chun Jason Xue<sup>2</sup> and Edwin H.-M. Sha<sup>1</sup>

> <sup>1</sup>Chongqing University <sup>2</sup>City University of Hong Kong







### Introduction

Increasing memory capacity requirement



- Challenges of DRAM
  - Limited scalability, High leakage power
- Opportunities of NVM
  - High density, low leakage power, Non-volatility



#### ► Multiple level cell (MLC) NVM

By further dividing the large resistance range Increases the data density, lower price, lower energy per bit

#### Complex and costly programming

Program-and-verify (P&V), much higher write latency, energy, and write times on indirect cell states e.g. R01 and R10 for MLC PCM, R2-5 for TLC ReRAM 4



# Program-and-verify (P&V)



- Programming of MLC NVM requires precisely writing a cell (P&V)
- The number of iterations is highly dependent on the original and written data

#### The number of iterations



- MLC NVMs have **asymmetric** in number of P&V iterations
- PreSET [ISCA 12, ICCD 15], WOM (write-once-memory) [DATE 14, ISLPED 13, TC 16] are proposed by taking advantage of the write asymmetric



- PreSET exploited this asymmetry by proactively setting all cells of a memory line into one full state
- It significantly increases the write power due to the proactive write
- It impairs the lifetime of the main memory since the writes to memory cells are approximately doubled

#### Write-Once Memories (WOM)

- Introduced by Rivest and Shamir, "How to reuse a writeonce memory", 1982
   Bits Value 1<sup>st</sup> Write 2<sup>nd</sup> Write
- The memory elements represent bits (2 levels) and are irreversibly programmed from 0 to 1
- WOM are popular on NVM:
- [MICRO 09] [MSST 10] [ISIT 13]
  [MSST 14] [ISIT 15] [MSST 15]
  [FAST 15] [DATE 14] [TC 16]

| <b>Bits Value</b> | 1 <sup>st</sup> Write | 2 <sup>nd</sup> Write |
|-------------------|-----------------------|-----------------------|
| 00                | 000                   | 111                   |
| 01                | 001                   | 110                   |
| 10                | 010                   | 101                   |
| 11                | 100                   | 011                   |



#### Write-Once Memories (WOM)



- 50% of extra space
- Eliminating the longest (the worst-case) latency writes
- Without consideration of the shortest (the best-case) latency writes



#### **Problem and Goal**

- Want to leverage MLC-NVM's strengths
  - Higher density
  - More scalability than existing technologies (DRAM)
- But, also want to mitigate MLC NVM's weaknesses

– Higher latency/energy, poor endurance

• *Our goal* in this work is to propose new optimizations designed to mitigate the weaknesses of MLC NVM

#### **Motivation**



(a) Conv. WOM code shaping

Minimizing the Worst Case

(b) Enhanced WOM code shaping

Maximizing the Best Case



#### WOM for MLC NVM

• Extend WOM on minimizing the worst case for MLC NVM



#### **Enhanced WOM**

• Enhanced WOM is designed for maximizing the best case



#### Example





### **Experimental Setup**

- Experimental setup
  - Simulation platform: Gem5
- Benchmarks:
  - Mibench
- PCM configurations:

**RESET** timing

| PCM CHIP CONFIGURATIONS [14, 10]. |        |                        |              |  |
|-----------------------------------|--------|------------------------|--------------|--|
| STR                               |        | RTS                    |              |  |
| SET current                       | 150 uA | RESET current          | 250 uA       |  |
| SET timing                        | 150 ns | <b>RESET</b> timing    | 75 ns        |  |
| RESET current                     | 200 uA | SET timing             | 15*9=135 ns  |  |
| for '10', '01','00'               | 225 uA | for '01', '10', '11'   | 15*13=195 ns |  |
|                                   | 250 uA | $(pulse \times pulse)$ | 15*23=345 ns |  |
|                                   |        |                        |              |  |

50 ns

SET current

150 uA

TABLE IVPCM CHIP CONFIGURATIONS [14, 10].

# Write Energy on Main Memory



It is note that the enhanced WOM still incurs write energy overhead compared to the baseline, 11.6% on average

# **Overall Energy**



The results show that the write energy overhead of main memory is partly covered by the performance improvement

### **Performance Results**



Fig. 10. Instructions per second.

Compared to the baseline, PreSET, conventional WOM code, and enhanced WOM code speedup the system performance by 7.8%, 9.8%, and 10.3%, respectively



### Conclusion

- The adoption of MLC NVMs is limited by their high programming energy and latency as well as the low endurance
- We propose an enhanced WOM code for MLC NVMs, w hich exploits the asymmetric characteristic in MLCNVM c ell state transitions
- Unlike the conventional WOM codes that focus on elimin ating the worst-case latency writes, we propose to enlarg e the best-case latency writes in MLC NVM cell state tra nsitions

#### **ASPDAC 2018**



# Energy, Latency, and Lifetime Improvements in MLC NVM with Enhanced WOM Code

Huizhang Luo<sup>1</sup>, **Liang Shi<sup>1\*</sup>**, Qiao Li<sup>1</sup>, Chun Jason Xue<sup>2</sup> and Edwin H.-M. Sha<sup>1</sup>

> <sup>1</sup>Chongqing University <sup>2</sup>City University of Hong Kong



