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Outline
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Application Model
Task Set Γ
● Task set Γ, non-preemptive periodic dependent tasks 
● Each task has an implicit deadlines
● Tasks communicate over shared variables (register communication)
● Tasks operate based on read-execute-write semantics

● A task is described by
● Execution times: 𝐶𝐶𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶𝑖𝑖𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅, 𝐶𝐶𝑖𝑖𝑊𝑊𝑊𝑊𝑖𝑖𝐸𝐸𝑅𝑅

● Period: 𝑇𝑇𝑖𝑖
● Size in memory: 𝑆𝑆𝑖𝑖

Read Execute Write
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● Applications are subject to data propagation constraints
● Additional timing constraints on                                                      

propagation of data through a                                                                 
chain of independent tasks

● JLD are a way to transform timing                                                     
constraints on data propagation                                                                into 
precedence constraints of                                                                                         
tasks jobs [1,2]

● Set of job-level dependencies Θ

● 𝜏𝜏𝑖𝑖
(𝑘𝑘,𝑙𝑙)

𝜏𝜏𝑗𝑗 meaning: Every kth job of 𝜏𝜏𝑖𝑖 must precede every lth job of 𝜏𝜏𝑗𝑗
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Application Model
Set of Job-Level Dependencies
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[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in
Proceedings of the 22nd IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016, pp.
159–169.
[2] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte, “A generic framework facilitating early analysis of data propagation delays in
multi-rate systems (invited paper),” in Proceedings of the 23th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2017, pp. 1–11.



6

Platform Model
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Predictable Execution of Real-Time Applications on 
Clustered Many-Core Platforms

● Contention-Free Execution Framework [2]

[2] M. Becker, D. Dasari,B. Nicolic, B. Åkesson, V. Nélis, and T. Nolte, “Contention-free execution of automotive 
applications on a clustered many-core platform,” in Proceedings of the 28th Euromicro Conference on Real-Time 
Systems (ECRTS), 2016, pp. 14–24. 

Memory Bank Privatization

Read-Execute-Write Semantic

Time-Triggered Scheduling
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Memory Bank Privatization
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Task Execution – Read-Execute-Write
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Time Triggered Scheduling

Read Memory Write Memory



● Local memory banks >> tasks footprint
● CEF only uses a fraction of the available memory
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Memory Aware Contention Free 
Execution Framework

C
or

e 
Pr

iv
at

e 
M

em
or

y 
Ba

nk

Communication Data

Preloaded Task

C
or

e 
Pr

iv
at

e 
M

em
or

y 
Ba

nk
Communication Data

Preloaded Task

Statically Allocated Tasks

CEF MCEF



● Distinguish task types, static and dynamic

● Dynamic task: 
● Not all jobs of the task are executed on the same core
● Required memory is allocated in external memory

● Static task: 
● All jobs of the task are executed on the same core
● Required memory is allocated on the cores private memory bank
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Differentiate tasks based on 
execution behaviour 
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Static Task
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Static vs. Dynamic Tasks

𝐶𝐶𝑖𝑖,𝑅𝑅
𝐷𝐷𝐷𝐷𝐷𝐷. 𝐶𝐶𝑖𝑖,𝑊𝑊

𝐷𝐷𝐷𝐷𝐷𝐷.𝐶𝐶𝑖𝑖,𝐸𝐸

𝐶𝐶𝑖𝑖,𝑅𝑅𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸. 𝐶𝐶𝑖𝑖,𝑊𝑊𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸.𝐶𝐶𝑖𝑖,𝐸𝐸

𝜏𝜏𝑖𝑖 dynamic:

𝜏𝜏𝑖𝑖 static:

𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷𝐷𝐷.

𝐶𝐶𝑖𝑖𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸.

● Static Tasks
+ Less utilization due to shorter memory phases
+ Efficient usage of internal memory
- Scheduling problem becomes harder

● Dynamic Tasks
+ Flexibility during schedule generation
- Larger memory phases that negatively impact scheduling
- Add traffic to the access path to external memory
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Generation of System Configuration and Time 
Triggered Schedule
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Tasks Job Level 
Dependencies

Constraint 
Programming

Hardware Model and 
Memory Latencies

● Constraint programming (Conditional Time-Intervals)
● Find the assignment of tasks to static/dynamic types
● Allocate static tasks to cores considering local memory constraints
● Generate time triggered schedule to consider execution times 

depending on task types
● Consider job-level dependencies between the tasks jobs



● 5 compute cores @ 400 MHz
● Access to local memory takes 1 cycle to fetch 8 bytes
● Access to external memory 3x slower
● Local memory banks have a size of 64 KB
● Task set contains 10 tasks 
● Periods [1, 2, 5, 10, 20, 50, 100, 200] ms
● Utilization generated by UUniFast
● Memory region in 3 Memory Settings (MS)

● MS1 Footprint: [6, 30] KB, Local Data: [64, 512] bytes
● MS2 Footprint: [6, 60] KB, Local Data: [64, 1024] bytes
● MS3 Footprint: [6, 90] KB, Local Data: [64, 2048] bytes
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Evaluation – Synthetic Experiments

Each data point represents 300 random task sets
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Evaluation – Schedulability Ratio
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%
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Evaluation – Solving Times



● Many-core platforms become increasingly relevant for 
embedded real-time systems

● CEF provides a way to deterministically execute real-time 
applications on a clustered many-core platform

● Drawback exists in the inefficient usage of local memory 
which leads to high NoC utilization

● MCEF overcomes this limitation by assigning tasks statically 
to local memory

● Constraint Programming formulation to efficiently find a 
schedule and system configuration that outperforms CEF

● Heuristic solutions to scale to industrial sized applications
● Task grouping to reduce the number of schedulable entities

19

Conclusions and Future Work
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