
Scheduling Multi-Rate Real-Time Applications
on Clustered Many-Core Architectures with
Memory Constraints

Matthias Becker, Saad Mubeen, Dakshina Dasari, Moris Behnam, Thomas Nolte

ASP-DAC, Jeju Island, Korea
24. January 2018

2

Core

Core

Core

Core

Core

Core

Core

Core

Memory

Memory

Memory

Memory

Memory

Memory

Memory

Memory

x

● Background Information

● Contention Free Execution Framework

● Observations and Drawback

● Memory Aware Contention Free Execution Framework

● Evaluation

● Conclusions and Future Work

3

Outline

4

Application Model
Task Set Γ
● Task set Γ, non-preemptive periodic dependent tasks
● Each task has an implicit deadlines
● Tasks communicate over shared variables (register communication)
● Tasks operate based on read-execute-write semantics

● A task is described by
● Execution times: 𝐶𝐶𝑖𝑖𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅, 𝐶𝐶𝑖𝑖𝐸𝐸𝐸𝐸𝑅𝑅𝐸𝐸𝐸𝐸𝐸𝐸𝑅𝑅, 𝐶𝐶𝑖𝑖𝑊𝑊𝑊𝑊𝑖𝑖𝐸𝐸𝑅𝑅

● Period: 𝑇𝑇𝑖𝑖
● Size in memory: 𝑆𝑆𝑖𝑖

Read Execute Write

t

Make local
copies of input

data

Update output
data in shared

memory

Operate on the
local copies

● Applications are subject to data propagation constraints
● Additional timing constraints on

propagation of data through a
chain of independent tasks

● JLD are a way to transform timing
constraints on data propagation into
precedence constraints of
tasks jobs [1,2]

● Set of job-level dependencies Θ

● 𝜏𝜏𝑖𝑖
(𝑘𝑘,𝑙𝑙)

𝜏𝜏𝑗𝑗 meaning: Every kth job of 𝜏𝜏𝑖𝑖 must precede every lth job of 𝜏𝜏𝑗𝑗

5

Application Model
Set of Job-Level Dependencies

2 4 8 10

𝜏𝜏1

𝜏𝜏2

𝜏𝜏3
6

Maximum Data Age

[1] M. Becker, D. Dasari, S. Mubeen, M. Behnam, and T. Nolte, “Synthesizing job-level dependencies for automotive multi-rate effect chains,” in
Proceedings of the 22nd IEEE International Conference on Embedded and Real-Time Computing Systems and Applications (RTCSA), 2016, pp.
159–169.
[2] M. Becker, S. Mubeen, D. Dasari, M. Behnam, and T. Nolte, “A generic framework facilitating early analysis of data propagation delays in
multi-rate systems (invited paper),” in Proceedings of the 23th IEEE International Conference on Embedded and Real-Time Computing
Systems and Applications (RTCSA), 2017, pp. 1–11.

6

Platform Model

Core 1

Core 2

Core n

…

Memory
Bank 1

Memory
Bank 2

Memory
Bank n

…

External Memory

Compute
Cores

Local
Memory

External
Memory

To small for complete
application footprint

Slow access times

Possible contention leads to
large worst-case access

times

7

Predictable Execution of Real-Time Applications on
Clustered Many-Core Platforms

● Contention-Free Execution Framework [2]

[2] M. Becker, D. Dasari,B. Nicolic, B. Åkesson, V. Nélis, and T. Nolte, “Contention-free execution of automotive
applications on a clustered many-core platform,” in Proceedings of the 28th Euromicro Conference on Real-Time
Systems (ECRTS), 2016, pp. 14–24.

Memory Bank Privatization

Read-Execute-Write Semantic

Time-Triggered Scheduling

8

Memory Bank Privatization

Core 1

Core 2

Core n
…

Memory
Bank 1

Memory
Bank 2

Memory
Bank n

…

Compute
Cores

Local
Memory

Global
communication

variables

Local assignment of
cores to banks

Core n

No contention when compute cores access local
memory banks during execution phase!

Cores’ private
memory banks

9

Task Execution – Read-Execute-Write

Read Execute Write

t
Make local

copies of data
Update data in
shared memory

Operate on the
local copies

+ Load the code
from off-chip

memory

Private Memory Bank

No interference
from others!!!

+ Write data to
off-chip memory

10

Time Triggered Scheduling

Read Memory Write Memory

● Local memory banks >> tasks footprint
● CEF only uses a fraction of the available memory

11

Memory Aware Contention Free
Execution Framework

C
or

e
Pr

iv
at

e
M

em
or

y
Ba

nk

Communication Data

Preloaded Task

C
or

e
Pr

iv
at

e
M

em
or

y
Ba

nk
Communication Data

Preloaded Task

Statically Allocated Tasks

CEF MCEF

● Distinguish task types, static and dynamic

● Dynamic task:
● Not all jobs of the task are executed on the same core
● Required memory is allocated in external memory

● Static task:
● All jobs of the task are executed on the same core
● Required memory is allocated on the cores private memory bank

12

Differentiate tasks based on
execution behaviour

13

Static Task

Read Execute Write

t
Make local

copies of data
Update data in
shared memory

Operate on the
local copies

Private Memory Bank

No interference
from others!!!

Task code
already there

14

Static vs. Dynamic Tasks

𝐶𝐶𝑖𝑖,𝑅𝑅
𝐷𝐷𝐷𝐷𝐷𝐷. 𝐶𝐶𝑖𝑖,𝑊𝑊

𝐷𝐷𝐷𝐷𝐷𝐷.𝐶𝐶𝑖𝑖,𝐸𝐸

𝐶𝐶𝑖𝑖,𝑅𝑅𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸. 𝐶𝐶𝑖𝑖,𝑊𝑊𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸.𝐶𝐶𝑖𝑖,𝐸𝐸

𝜏𝜏𝑖𝑖 dynamic:

𝜏𝜏𝑖𝑖 static:

𝐶𝐶𝑖𝑖
𝐷𝐷𝐷𝐷𝐷𝐷.

𝐶𝐶𝑖𝑖𝑆𝑆𝐸𝐸𝑅𝑅𝐸𝐸.

● Static Tasks
+ Less utilization due to shorter memory phases
+ Efficient usage of internal memory
- Scheduling problem becomes harder

● Dynamic Tasks
+ Flexibility during schedule generation
- Larger memory phases that negatively impact scheduling
- Add traffic to the access path to external memory

15

Generation of System Configuration and Time
Triggered Schedule

C
or

e
Pr

iv
at

e
M

em
or

y
Ba

nk

Labels

Code, Dynamic Task

Code, Static Tasks 𝜏𝜏1 𝜏𝜏𝐵𝐵 →
𝑖𝑖,𝑗𝑗
𝜏𝜏𝐴𝐴

Tasks Job Level
Dependencies

Constraint
Programming

Hardware Model and
Memory Latencies

● Constraint programming (Conditional Time-Intervals)
● Find the assignment of tasks to static/dynamic types
● Allocate static tasks to cores considering local memory constraints
● Generate time triggered schedule to consider execution times

depending on task types
● Consider job-level dependencies between the tasks jobs

● 5 compute cores @ 400 MHz
● Access to local memory takes 1 cycle to fetch 8 bytes
● Access to external memory 3x slower
● Local memory banks have a size of 64 KB
● Task set contains 10 tasks
● Periods [1, 2, 5, 10, 20, 50, 100, 200] ms
● Utilization generated by UUniFast
● Memory region in 3 Memory Settings (MS)

● MS1 Footprint: [6, 30] KB, Local Data: [64, 512] bytes
● MS2 Footprint: [6, 60] KB, Local Data: [64, 1024] bytes
● MS3 Footprint: [6, 90] KB, Local Data: [64, 2048] bytes

16

Evaluation – Synthetic Experiments

Each data point represents 300 random task sets

17

Evaluation – Schedulability Ratio

19
%

18

Evaluation – Solving Times

● Many-core platforms become increasingly relevant for
embedded real-time systems

● CEF provides a way to deterministically execute real-time
applications on a clustered many-core platform

● Drawback exists in the inefficient usage of local memory
which leads to high NoC utilization

● MCEF overcomes this limitation by assigning tasks statically
to local memory

● Constraint Programming formulation to efficiently find a
schedule and system configuration that outperforms CEF

● Heuristic solutions to scale to industrial sized applications
● Task grouping to reduce the number of schedulable entities

19

Conclusions and Future Work

Thank you for the
attention!
Questions?

	Scheduling Multi-Rate Real-Time Applications on Clustered Many-Core Architectures with Memory Constraints
	スライド番号 2
	Outline
	Application Model�Task Set Γ
	Application Model�Set of Job-Level Dependencies
	Platform Model
	Predictable Execution of Real-Time Applications on Clustered Many-Core Platforms�
	Memory Bank Privatization
	Task Execution – Read-Execute-Write
	Time Triggered Scheduling
	Memory Aware Contention Free Execution Framework
	Differentiate tasks based on execution behaviour
	Static Task
	Static vs. Dynamic Tasks
	Generation of System Configuration and Time Triggered Schedule�
	Evaluation – Synthetic Experiments
	Evaluation – Schedulability Ratio
	Evaluation – Solving Times
	Conclusions and Future Work
	Thank you for the attention!

