

Arizona State University

Fully Parallel RRAM Synaptic Array for Implementing Binary Neural Network with (+1, -1) Weights and (+1, 0) Neurons

Xiaoyu Sun, Xiaochen Peng, Pai-Yu Chen, Rui Liu, Jae-sun Seo, and Shimeng Yu

Arizona State University, Tempe, AZ, 85281, USA

Email: pchen72@asu.edu

http://faculty.engineering.asu.edu/shimengyu/

School of Electrical, Computer and Energy Engineering (ECEE)

Outline

- Challenges of On-chip Implementation of Deep Neural Networks and Demand on Binary Neural Networks
- RRAM Based Parallel-BNN Accelerator Design
- Comparison Between Conventional Serial-BNN and Proposed Parallel-BNN
- Summary

Demands for On-chip Implementation of DNNs

 Deep learning in the cloud: expensive computation, huge training data, low energy efficiency, high precision

- Edge computing needs novel hardware and algorithms
 - Local to the sensor, low power, small area

Why Binary Neural Networks?

- When the neural network gets deeper, the high demands on <u>memory capacity</u> and <u>computational power</u> make it unsuitable for on-chip implementation.
 - ResNet-50 has 25.5M parameters and requires 3.9G high precision operations to classify one image.
- Binary Neural Networks are able to achieve satisfying classification accuracy with significant savings on memory usage and computational resources.

Dataset	FL Precision	Binary Precision
MNIST	98.72%	98.54%
CIFAR-10	89.98%	88.47%

A Shift in Computing Paradigm

Hardware Acceleration Platforms

- Solution: beyond CMOS with emerging non-volatile memory
 - Maximizing the parallel operation in hardware, load more weights on-chip as emerging NVMs are much smaller than SRAM
 - Loading more weights on-chip eliminate the off-chip memory access, thereby saving latency and energy consumption

Outline

- Challenges of On-chip Implementation of Deep Neural Networks and Demand on Binary Neural Networks
- RRAM Based Parallel-BNN Accelerator Design
- Comparison Between Conventional Serial-BNN and Proposed Parallel-BNN
- Summary

The CNN Topology Used for Evaluation

- Similar to LeNet, 2 convolutional stages, followed by a 64-64-10 MLP.
 - Kernel size: 5x5
 - Dataset: MNIST, binarized to black and white
 - Only the MLP are evaluated on the proposed architecture

Truncating Weights and Neurons to Binary

- We investigated the impact of precision truncation on the saturated training accuracy.
- 98.72% with floating point precision 99% in both feed forward and back 99% propagation.
- 6-bit precision is necessary for back propagation to maintain a good training accuracy.

The baseline accuracy is <u>98.54%</u>, where the precision is truncated to 1-bit for inference after the network is welltrained with floating point precision.

□ "0" : High Resistance State (HRS, OFF-state)
 □ "1" : Low Resistance State (LRS, ON-state)
 □ HRS→LRS: SET
 □ LRS→HRS: RESET

RRAM Arrays for Matrix-Vector Multiplication

IT1R vs. crossbar array:

- Less weight update energyNo write disturbance issue
- × Larger cell area
- **×** IR drop on transistor

RRAM Based Parallel-BNN Accelerator

- Conventional RRAM synaptic array with row-by-row read-out
- 1 cell as one synapse
- Lots of peripheral circuits (sense amplifier, adder, register, etc.) to generate 1-bit neuron output
- Parallel RRAM synaptic array with parallel read-out, multiple WLs are activated simultaneously
- 2 cells as one synapse
- A single CSA behaves as the neuron circuit

RRAM Cell Configuration Enabling Parallel Operation

- We use (+1, -1) for weights, (+1, 0) for neurons
- 2 cells with complimentary resistance states are grouped as 1 synapse
- When input is "1", WL is activated
 → current difference between SL and SL_bar
- When input is "0", WL is off → no current
- Key idea: the difference of the number of LRS-cells between two SLs in one weight-column is equal to the absolute value of the weighted sum

Current Mode Sense Amplifier and Its Impact on Classification Accuracy

- CSA behaves as the neuron circuit → Heaviside function
- CSA offset may cause wrong output when difference between I_{SL} and I_{SL_bar} is too small
- Taken offset into consideration during software simulation, the classification accuracy drops quickly when offset is larger than 2.

Current Mode Sense Amplifier and Its Impact on Classification Accuracy

Diff.	# of LRS-cell on SL						
	5	6	7	8	9	10	
1~3	/	/	/	97.6	96.8	95.8	
4~6	/	/	100	100	100	100	
7~9	100	100	100	100	100	100	

- Instead of the assumption that all the CSAs have a uniform offset pattern, the practical offset pattern is generated from Monte Carlo simulation using TSMC65GP PDK.
- To save time, when the difference is in [1, 3], [4, 6], and [7, 9], we used the offset information of 2, 5, and 8 respectively. 35 sets of MC simulations to cover all the cases.

Current Mode Sense Amplifier and Its Impact on Classification Accuracy

- Inference with generated offset pattern: The average accuracy is <u>~97.6%</u>, close to the accuracy of S-BNN ~98.5%. The standard deviation is ~0.6%, which means ~68% of runs could achieve >97% (<1.5% loss) and ~95% of runs could achieve >96.4% (<2.1% loss).</p>
- As the CSA used in this work is a common design, the accuracy loss could be effectively reduced by employing a more advanced CSA with offset-cancellation techniques.

Outline

- Challenges of On-chip Implementation of Deep Neural Networks and Demand on Binary Neural Networks
- RRAM Based Parallel-BNN Accelerator Design
- Comparison Between Conventional Serial-BNN and Proposed Parallel-BNN
- Summary

NeuroSim: A Circuit-level Macro Model

- NeuroSim is a circuit-level benchmark simulator developed in C++ that can estimate the area, latency, energy and leakage for neuro-inspired computing with the supporting peripheral circuits to facilitate the design exploration.
- NeuroSim has flexible design options:
 - Array architecture type and array size
 - HP/LSTP transistors with technology nodes from 130 nm to 7 nm
 - Memory cell parameters such as eNVM resistance and read/write voltage
 - System parameters such as the activity factor in weighted sum and weight update operation

Comparison on Latency, Energy, Area, and Accuracy

Performance	S-BNN	P-BNN	Improvement
Accuracy	~98.5%	~97.6% (Mean)	-0.9%
Area (µm ²⁾	7913.97	6665.89	16%
Latency (ns)	2376.00	10.42	228X
Energy (pJ)	710.06	34.48	20X
TOPS/W	6.67	137.35	20X

- Area overhead is reduced by ~16% even with doubled array size, mainly due to the <u>elimination of MAC peripheral circuits</u>. (adder, register, etc.)
- P-BNN could achieve a high energy efficiency of <u>137.35TOPS/W</u>, improved by <u>20X</u> compared to conventional S-BNN, with only <u>~0.9%</u> accuracy degradation.

Outline

- Challenges of On-chip Implementation of Deep Neural Networks and Demand on Binary Neural Networks
- RRAM Based Parallel-BNN Accelerator Design
- Comparison Between Conventional Serial-BNN and Proposed Parallel-BNN
- Summary

Summary

- Binary neural network is a promising solution for on-chip implementation of DNNs due to significant reduction in memory size and computation load.
- A RRAM based <u>parallel-BNN</u> hardware accelerator is proposed, aiming to achieve a better <u>energy-efficiency</u> than conventional approach.
- The impact of <u>CSA offset</u> on classification accuracy is well analyzed through Monte Carlo simulation using TSMC65 PDK.
- The proposed architecture could achieve <u>137.35TOPS/W</u>, improved by 20X, with only 0.9% accuracy degradation.
- Next: scalability on larger networks and datasets

Acknowledgement

