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Demands for On-chip Implementation of DNNs
 Deep learning in the cloud: expensive computation, huge 

training data, low energy efficiency, high precision

IBM Jeopardy
2880 3.5GHz 

P7 cores

Google Cat:
16,000 CPU 

cores

 Edge computing needs novel hardware and algorithms
– Local to the sensor, low power, small area

30 
frames/s
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Why Binary Neural Networks?

 When the neural network gets deeper, the high demands
on memory capacity and computational power make it
unsuitable for on-chip implementation.
– ResNet-50 has 25.5M parameters and requires 3.9G high

precision operations to classify one image.

 Binary Neural Networks are able to achieve satisfying
classification accuracy with significant savings on
memory usage and computational resources.

Dataset FL Precision Binary Precision

MNIST 98.72% 98.54%
CIFAR-10 89.98% 88.47%
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A Shift in Computing Paradigm

Processor Memoryvon-Neumann 
architecture

Neuro-inspired 
architecture



Arizona State University

6

 Solution: beyond CMOS with emerging non-volatile 
memory

– Maximizing the parallel operation in hardware, load more weights 
on-chip as emerging NVMs are much smaller than SRAM

– Loading more weights on-chip eliminate the off-chip memory 
access, thereby saving latency and energy consumption

Hardware Acceleration Platforms

GPU
10 – 30 X

FPGA
10 – 50 X

CMOS ASIC
102 – 103 X

Beyond CMOS 
>103 X
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The CNN Topology Used for Evaluation

convolutions subsampling subsamplingconvolutions fully connected layer 

input image
32x32

6 feature maps 
C1: 28x28

6 f. maps 
S2: 14x14

12 f. maps 
C3: 10x10

12 f. maps
S4: 5x5

C5: 64 F6: 64 OUTPUT: 10

 Similar to LeNet, 2 convolutional stages, followed by a
64-64-10 MLP.
– Kernel size: 5x5
– Dataset: MNIST, binarized to black and white
– Only the MLP are evaluated on the proposed architecture
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Truncating Weights and Neurons to Binary

95%

96%

97%

98%

99%

100%

98.54%
98.13%

98.59%98.72%

1b/FL1b/6bFL/FL 6b/6b

 training accuracy (FF/BP)
 inference accuracy (inf./tra.)
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 We investigated the impact of precision truncation on the
saturated training accuracy.

– 98.72% with floating point precision
in both feed forward and back
propagation.

– 6-bit precision is necessary for
back propagation to maintain a good
training accuracy.

 The baseline accuracy is 98.54%,where the precision is
truncated to 1-bit for inference after the network is well-
trained with floating point precision.
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What Is Oxide RRAM?

 “0” : High Resistance State (HRS, OFF-state)
 “1” : Low Resistance State (LRS, ON-state)
 HRSLRS: SET 
 LRSHRS: RESET

Typical I-V Curve
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RRAM Arrays for Matrix-Vector Multiplication

 1T1R vs. crossbar array:
Less weight update energy
No write disturbance issue

 Larger cell area
 IR drop on transistor

G11

V1

G21 Gn1

G12 G22 Gn2

G1m G2m Gnm

V2

Vm

I1 I2 In

WL

BL

Crossbar Array 1T1R (Pseudo-crossbar) Array

S
L

BL

WL
G11 G21 Gn1

G12 G22 Gn2

G1m G2m Gnm

V1

V2

Vm

I1 I2 In
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RRAM Based Parallel-BNN Accelerator
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SL SL_bar SL SL_bar

weight-column

 Conventional RRAM synaptic array
with row-by-row read-out

 1 cell as one synapse
 Lots of peripheral circuits (sense

amplifier, adder, register, etc.) to
generate 1-bit neuron output

8 columns share one CSA
 Parallel RRAM synaptic array with

parallel read-out, multiple WLs are
activated simultaneously

 2 cells as one synapse
 A single CSA behaves as the

neuron circuit
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RRAM Cell Configuration Enabling Parallel Operation

HRS LRS
1

SL
BL

WL

LRS HRS
1

SL
BL

WL

HRS LRS
0

SL
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WL

LRS HRS
0

SL
BL

WL

Input 1

Input 0

Weight +1
( LRS, HRS )

Weight -1
( HRS, LRS )

ISL < ISL_bar: -1 ISL > ISL_bar: +1

SL_bar SL_bar

SL_bar SL_bar

X XX X
No current: 0 No current: 0

      

    

  

    

  

 We use (+1, -1) for weights, (+1, 0)
for neurons

 2 cells with complimentary
resistance states are grouped as 1
synapse

 When input is “1”, WL is activated
 current difference between SL
and SL_bar

 When input is “0”, WL is off  no
current

 Key idea: the difference of the
number of LRS-cells between two
SLs in one weight-column is equal
to the absolute value of the
weighted sum
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Current Mode Sense Amplifier and Its Impact on 
Classification Accuracy

... ...
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Offset (Abs. Diff.)
 CSA behaves as the neuron circuit Heaviside function
 CSA offset may cause wrong output when difference between ISL and

ISL_bar is too small
 Taken offset into consideration during software simulation, the

classification accuracy drops quickly when offset is larger than 2.
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Current Mode Sense Amplifier and Its Impact on 
Classification Accuracy

0 1 2 3 4 5 6 7 8 9 10
0%

25%

50%

75%

100%

From 10 vs. 10 to 10 vs. 20

 

 

Pa
ss

 R
at

e

LRS-Cell Difference

 Pass Rate 

10,000 points for each case 

 Instead of the assumption that all the CSAs have a uniform offset
pattern, the practical offset pattern is generated from Monte Carlo
simulation using TSMC65GP PDK.

 To save time, when the difference is in [1, 3], [4, 6], and [7, 9], we used
the offset information of 2, 5, and 8 respectively. 35 sets of MC
simulations to cover all the cases.

Diff. # of LRS-cell on SL
5 6 7 8 9 10 …

1~3 / / / 97.6 96.8 95.8 …

4~6 / / 100 100 100 100 …

7~9 100 100 100 100 100 100 …

Diff. >10 is safe



Arizona State University

16

Current Mode Sense Amplifier and Its Impact on 
Classification Accuracy

S-BNN: 
98.5%
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1,000 runs in total
Mean = 97.6%
Std = 0.6%

 Inference with generated offset pattern: The average accuracy is
~97.6%, close to the accuracy of S-BNN ~98.5%. The standard
deviation is ~0.6%, which means ~68% of runs could achieve >97%
(<1.5% loss) and ~95% of runs could achieve >96.4% (<2.1% loss).

 As the CSA used in this work is a
common design, the accuracy
loss could be effectively reduced
by employing a more advanced
CSA with offset-cancellation
techniques.
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NeuroSim: A Circuit-level Macro Model
 NeuroSim is a circuit-level benchmark simulator

developed in C++ that can estimate the area,
latency, energy and leakage for neuro-inspired
computing with the supporting peripheral circuits to
facilitate the design exploration.

 NeuroSim has flexible design options:
– Array architecture type and array size
– HP/LSTP transistors with technology nodes from 

130 nm to 7 nm
– Memory cell parameters such as eNVM

resistance and read/write voltage
– System parameters such as the activity factor in 

weighted sum and weight update operation # pulses

G

Peripheral 
Circuits

Array
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Comparison on Latency, Energy, Area, and Accuracy

Performance S-BNN P-BNN Improvement

Accuracy ~98.5% ~97.6% (Mean) -0.9%

Area (µm2) 7913.97 6665.89 16%

Latency (ns) 2376.00 10.42 228X

Energy (pJ) 710.06 34.48 20X

TOPS/W 6.67 137.35 20X

 Area overhead is reduced by ~16% even with doubled array size,
mainly due to the elimination of MAC peripheral circuits. (adder,
register, etc.)

 P-BNN could achieve a high energy efficiency of 137.35TOPS/W,
improved by 20X compared to conventional S-BNN, with only ~0.9%
accuracy degradation.



Arizona State University

20

Outline

 Challenges of On-chip Implementation of Deep
Neural Networks and Demand on Binary Neural
Networks

 RRAM Based Parallel-BNN Accelerator Design

 Comparison Between Conventional Serial-BNN and
Proposed Parallel-BNN

 Summary



Arizona State University

21

Summary

 Binary neural network is a promising solution for on-chip 
implementation of DNNs due to significant reduction in 
memory size and computation load.
 A RRAM based parallel-BNN hardware accelerator is 

proposed, aiming to achieve a better energy-efficiency
than conventional approach.
 The impact of CSA offset on classification accuracy is well 

analyzed through Monte Carlo simulation using TSMC65 
PDK.
 The proposed architecture could achieve 137.35TOPS/W, 

improved by 20X, with only 0.9% accuracy degradation.
 Next: scalability on larger networks and datasets
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