Spintronics based Stochastic Computing for Efficient Bayesian Inference System

Xiaotao Jia¹, **Jianlei Yang¹**, Zhaohao Wang¹ Yiran Chen², Hai (Helen) Li² and Weisheng Zhao¹ 1 Beihang University 2 Duke University

Outline

- Background and Motivation
- Proposed Bayesian Inference System
 - Spin-based stochastic bit-stream generator
 - Bayesian inference system: case studies
- Conclusions

Outline

- Background and Motivation
- Proposed Bayesian Inference System
 - Spin-based stochastic bit-stream generator
 - Bayesian inference system: case studies
- Conclusions

Why Bayesian Inference?

- Deep learning is everywhere
 - But have some disadvantages:
 - Could not represent the uncertainty
 - Could not take the advantages of well-studied experience and theories
 - Require large scale training data
 - Overfitting!

Bayesian learning

- Could capture the uncertainties well
- Could represent the casual relationships
- More robust, closer to human mind and thinking

http://blog.datumbox.com/machine-learning-tutorial-the-naive-bayes-text-classifier

Bayesian Inference

Bayes theorem: probabilistic computing

Bayesian Learning Challenges

Computation intensively

Kernel: probabilistic multiplication

$$P(H | E) = \frac{P(E | H) \cdot P(H)}{P(E)}$$

area

speed

Challenges and opportunities

- Bayesian inference on FPGA [Lin, FPGA'2010]
- Bayesian by analog CMOS [Mroszczyk, ISCAS'2014]
- Bottlenecks of computation
 - Float point multiplication
 - Random number generation
- How to improve the efficiency of Bayesian inference?

power

Improving Inference Efficiency

- Bottlenecks of computation
 - Float point multiplication
 - Random number generation
- Our solution

- Stochastic computing for FP multiplications
- Efficient random number generator by emerging spintronics device and circuit

exploiting non-conventional computing with emerging technologies for efficient Bayesian learning

Stochastic Computing

Basic concepts

- FP numbers are represented by random bit-streams
- By the ratio of '1': 5/8 (01101101, 10111001, 10101011)
- Complex computations could be realized by simple bit-wise operations on the bit-streams
 - AND for multiplication

MUX for scaled addition

Stochastic multiplier

Randomness Representation

- Magnetic tunnel junction (MTJ)
 - For memory use: deterministic switching
 - For randomness: stochastic switching

Outline

- Background and Motivation
- Proposed Bayesian Inference System
 - Spin-based stochastic bit-stream generator
 - Bayesian inference system and case studies
- Conclusions

MTJ Stochastic Switching

MTJ states

- High resistance (AP) or low resistance (P)
- Stochastic behaviors
 - Applying bias voltage/current for switching

Stochastic Bit-stream Generator(SBG)bias voltage is applied between BL and SL

MTJ/CMOS Hybrid Design

Design setup

• PDK: 45 nm CMOS and 40 nm MTJ fab.

Simulations

- Fixed duration time
- Varying bias voltage (represents probabilities)
- AP->P (write '1') duration time: 5ns
- P->AP (reset, write '0') duration time: 10ns
- Each cycle generates one random bit
 - reset (write '0') first
 - then write '1' (throw the dice)
 - read out (check the MTJ state)

write '1' and read out for each cycle

Switching Probabilities

- Accuracy (compared with MC simulation)
 - Improved by increasing the stream length/cycles

Inference System Diagram

- Architectures: SBG and SC
 - Input: evidence and likelihood function
 - Output: variable distribution

Representation of a Kalman filter

Example: locating a target with 3 sensors

- two types of data
 - distance
 - bear
- inference procedure
 - update location with the observations
- kernel computing
 - Bayesian inference

Example: locating a target with 3 sensors

 $p(x y | D_1 B_1 D_2 B_2 D_3 B_3) \propto p(x y) * \prod_i p(B_i | x y) p(D_i | x y)$

- Example: locating a target with 3 sensors
- Probability distribution comparison

- Example: locating a target with 3 sensors
- Accuracy analysis
 - Kullback-Leibler divergence (KL)
 - Ground truth v.s. Bayesian fusion

Grid size	Bit-stream length			
	64	128	256	
16 x 16	0.0090	0.0043	0.0018	
32 x 32	0.0086	0.0041	0.0019	
64 x 64	0.0080	0.0035	0.0011	

- Example: locating a target with 3 sensors
- Inference efficiency analysis
 - FPGA implementation* v.s. MTJ-based SC
 - 32x32 grids
 - Achieve the same accuracy (KL divergence)
 - Bit-stream length
 - FPGA-based BIS requires 10⁵ bits
 - We only use 256 bits
 - Speed: FPGA (10⁵ * 20 ns) v.s. MTJ (256 * 40 ns)
 - Power: FPGA (0.29 mJ) v.s. MTJ (<0.01 mJ)

* Bayesian Sensor Fusion with Fast and Low Power Stochastic Circuits, DATE 2016.

Case Study: Bayesian Belief Network

- Example: heart disaster prediction
 - Probabilistic graphical model

Case Study: Bayesian Belief Network

Example: heart disaster prediction

Probabilistic graphical model

Case Study: Bayesian Belief Network

- Example: heart disaster prediction
- Accuracy analysis
 - Compared with software results

Probability	(ctrl1, ctrl2, ctrl3, ctrl4)	Ref.*	SC
p(HD BP)	(0.25, 0.75, 1.00, 0.00)	0.803	0.805
p(HD D,E,BP)	(1.00, 1.00, 1.00, 0.00)	0.586	0.592
p(HD E,BP)	(0.25, 1.00, 1.00, 0.00)	0.687	0.694
p(HD D,E,BP,CP)	(1.00, 1.00, 1.00, 1.00)	0.777	0.742
p(HD CP)	(0.25, 0.75, 0.00, 1.00)	0.703	0.700

* Pythonic bayesian belief network framework https://github.com/eBay/bayesian-belief-networks

Outline

- Background and Motivation
- Proposed Bayesian Inference System
 - Spin-based stochastic bit-stream generator
 - Bayesian inference system and case studies
- Conclusions

Conclusions

- Build Bayesian inference system with non-conventional computing and emerging technologies
- Stochastic switching of spin device is well exploited for realizing inherent randomness for stochastic computing
- Applications have shown that our spinbased stochastic computing could improve the inference efficiency with lower design cost.

Thanks!

Q&A?