A Two-Step Search Engine For Large Scale Boolean Matching Under NP3 Equivalence

Chak-Wa Pui, Peishan Tu, Haocheng Li, Gengjie Chen, Evangeline F. Y. Young CSE Department, Chinese University of Hong Kong, Hong Kong Speaker: Jordan, Chak-Wa Pui

The Chinese University of Hong Kong

Outline

- Introduction
- Algorithms
- Experimental Results
- Conclusion

Background

- What is Boolean matching
 - determine whether two Boolean functions are functionally equivalent under some constraints.
 - The relationship between the inputs(outputs) are called **permutation**, while the sign decision is called **negation**
 - Many variants, such as NPNP, PP, etc.
- Really difficult to solve even under P
- Widely used in security, library binding, ECO, etc.

Representation of Boolean Matching

- Any matching can be represented by these two matrices.
- By limiting the value assignment of M_I, M_O, we can formulate all kinds of Boolean matching problem into these framework.
 - For example, in P equivalence, M₀ is given. A matching result under P must satisfy:
 - $\sum_{j=1}^{m_I} a_{i,j} = 1, \forall i = 1, ..., n_I$
 - $\sum_{i=1}^{n} a_{i,j} = 1, \forall j = 1, ..., m_{I}$
 - $b_{i,j} = 0, a_{i,m_I+1} = 0, \forall i, j$

$M_I =$	$egin{array}{c} y_1 \ y_2 \ dots \ y_{n_I} \ y_{n_I} \end{array}$	$\begin{bmatrix} x_1 \\ a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n_I,1} \end{bmatrix}$	$ \begin{array}{c} \neg x_1 \\ b_{1,1} \\ b_{2,1} \\ \vdots \\ b_{n_I,1} \end{array} $	···· ··· ···	$ \begin{array}{c} x_{m_I}\\a_{1,m_I}\\a_{2,m_I}\\\vdots\\a_{n_I,m_I} \end{array} $	$ \begin{array}{c} \neg x_{m_{I}} \\ b_{1,m_{I}} \\ b_{2,m_{I}} \\ \vdots \\ b_{n_{I},m_{I}} \end{array} $	$0 \\ a_{1,m_{I}+1} \\ a_{2,m_{I}+1} \\ \vdots \\ a_{n_{I},m_{I}+1}$	$\begin{bmatrix} 1 \\ b_{1,m_{I}+1} \\ b_{2,m_{I}+1} \\ \vdots \\ b_{n_{I},m_{I}+1} \end{bmatrix},$
$M_O =$	g_1 g_2 \vdots g_{n_O}	$ \begin{bmatrix} f_1 \\ c_{1,1} \\ c_{2,1} \\ \vdots \\ c_{n_O,1} \end{bmatrix} $	$ eggr{scalar}{llllllllllllllllllllllllllllllllll$	···· ··· ··.	$f_{m_O} \ c_{1,m_O} \ c_{2,m_O} \ dots \ c_{n_O,m_O}$	$ eglinet f_{m_O} \\ d_{1,m_O} \\ d_{2,m_O} \\ \vdots \\ d_{n_O,m_O} $))].	

Problem Formulation

- What is NP3
 - the permutation and negation of inputs/outputs like NPNP.
 - Non-Exact and Projection (NP)
 - Allow unmatched outputs in ckt0
 - Allow constant binding in inputs of ckt1
 - Allow one-to-many binding in ckt0 inputs
- Aims at maximizing the number of mapped outputs of both ckt0 and ckt1.

$M_I =$	$egin{array}{c} y_1 \ y_2 \ dots \ y_{n_I} \end{array}$	$\begin{bmatrix} x_1 \\ a_{1,1} \\ a_{2,1} \\ \vdots \\ a_{n_I,1} \end{bmatrix}$	$ egin{aligned} egin{aligned} egin{aligned} egin{aligned} b_{1,1} \\ b_{2,1} \\ \vdots \\ b_{n_I,1} egin{aligned} end{aligned} en$	···· ···· ···	$\begin{array}{c} x_{m_I} \\ a_{1,m_I} \\ a_{2,m_I} \\ \vdots \\ a_{n_I,m_I} \end{array}$	$ \begin{array}{c} \neg x_{m_{I}} \\ b_{1,m_{I}} \\ b_{2,m_{I}} \\ \vdots \\ b_{n_{I},m_{I}} \end{array} $	$egin{array}{c} 0 \ a_{1,m_I+1} \ a_{2,m_I+1} \ dots \ a_{n_I,m_I+1} \ dots \ a_{n_I,m_I+1} \end{array}$	$\begin{bmatrix} 1 \\ b_{1,m_{I}+1} \\ b_{2,m_{I}+1} \\ \vdots \\ b_{n_{I},m_{I}+1} \end{bmatrix}$
$M_O =$	g_1 g_2 \vdots g_{n_O}	$\begin{bmatrix} f_1 \\ c_{1,1} \\ c_{2,1} \\ \vdots \\ c_{n_O,1} \end{bmatrix}$	$ egin{aligned} equation f_1 \\ d_{1,1} \\ d_{2,1} \\ \vdots \\ d_{n_O,1} equation$	···· ··· ··.	$f_{m_O} \ c_{1,m_O} \ c_{2,m_O} \ dots \ c_{n_O,m_O}$	$ eglinet f_{m_O} \\ d_{1,m_O} \\ d_{2,m_O} \\ \vdots \\ d_{n_O,m_O} $)) _ _	

$$\sum_{i=1}^{n_O} \sum_{j=1}^{m_O} (c_{i,j} + d_{i,j}) > 0, \qquad (1)$$

$$\sum_{j=1}^{m_O} (c_{i,j} + d_{i,j}) \le 1, \quad \forall i = 1, \cdots, n_O, \qquad (2)$$

$$\sum_{j=1}^{m_I+1} (a_{i,j} + b_{i,j}) = 1, \quad \forall i = 1, \cdots, n_I, \qquad (3)$$

$$(\bigwedge_{c_{j,i}=1} f_i \equiv g_j) \land (\bigwedge_{d_{j,i}=1} f_i \equiv \neg g_j), \qquad (4)$$

$$(\bigwedge_{a_{j,i}=1} x_i \equiv y_j) \land (\bigwedge_{b_{j,i}=1} x_i \equiv \neg y_j). \qquad (5)$$

Previous works

- Three types
 - Signature-based
 - prune the Boolean matching space by filtering impossible I/O correspondences
 - Canonical form-based
 - compare the canonical representations of two Boolean functions to find valid I/O matches
 - SAT-based
 - Good scalability and high efficiency as the SAT solver become stronger nowadays
- Limitation:
 - To our knowledge, there is no previous works on NP3 equivalence, which is a more general formulation of Boolean matching and have applications in security and ECO.

Algorithms

- Overall framework
- Output Solver
- Input Solver

Algorithms

- Overall framework
- Output Solver
- Input Solver

Overview of the framework

- Two-step
- SAT-based backtracking output solver
- SAT-based input solver
- Incremental

Algorithms

- Overall framework
- Output Solver
 - Overview
 - Output functional constraints
 - Output solver heuristics
- Input Solver

Output Solver

- Feedbacks from input solver
 - If success, keep the current matched POs. O.W., forbid in later iterations
- Backtracking
 - No more pairs can be found if the current matched POs are kept
- Disable projection until no more output matching result can be found

Output Functional Constraints

- Definitions:
 - Function support
 - Structural support

- Constraints:
 - Forbid outputs f_i and g_j to be matched if $FuncSupp(f_i) > FuncSupp(g_j)$
 - Equal constraint enables faster output matching if some outputs share the same source

Output Solver Heuristics

- Output matching order heuristics
 - First match outputs with less functional/structural support and fanin
- Output grouping heuristic
 - Bad matched output pairs in early stage
 - Consider two functions f and g, where |f| = |g| = 4, and the numbers of functional supports of f₁, f₂, f₃, f₄ are 1,2,3,5, and the numbers of functional supports of g₁, g₂, g₃, g₄ are 2,2,4,6. if f1 is matched to g₄ at the beginning, either f₃ or f₄ cannot be matched to any g_i.
 - How to avoid
 - For two circuits with the same number of outputs, do grouping
 - Avoid matching across groups

Algorithms

- Overall framework
- Output Solver
- Input Solver
 - Overview
 - Input Functional Constraints
 - Input Solver Heuristics
 - Input Symmetric Constraints

Input Solver

- Similar to [1][2]
 - Use counter example to prune solution space
 - Given f_p and g_q for Boolean matching under NP3 equivalence, if $f_p(\vec{x}) \neq g_q(\vec{y})$, then any PI maching is infeasible if it maps \vec{x} to \vec{y} .
- Incremental
 - Counter examples from previous iterations of output and input solvers will be reused

- 1. Add previous counter examples
- 2. Add constraints
- 3. Get input pairs
 - If not success, end the loop
- 4. Construct miter
- 5. Solve miter
 - If not success, add counter example, goto 1
 - o.w., end the loop

Input Functional Constraints

- Remove redundant literal in a counter example
 - $\vec{x} = 1101$, $\vec{y} = 0101$, with $y_2 = 0$, $y_3 = 1$, y_0 , y_1 is redundant, hence implying three more counter examples $\vec{y} = 0101$, 0001,1001,1101
 - Reduce time since most of the time is spent in SAT solving
- Two inputs are allowed to match if their supported outputs are matched
- Bind irrelevant inputs in circuit 1 to constant

Input Solver Heuristics

- Output grouping heuristic
 - Avoid bad matched output pairs in early stage
 - Group the outputs and avoid matching across groups
- Output group signature heuristics
 - Given no projection and constant binding, two inputs must support the same corresponding groups in order to be matched
 - Can be matched if $W_{x_i} = W_{y_j}$
 - If $W_{x_i} \subset W_{y_j}$, we relax the constraints, let $w \in W_{y_j}$ and $w \notin W_{x_i}$, for any $g_p \in w$
 - The number of PO y_j support in w is small
 - In the matching of g_p there must be constant binding or projection

Input Symmetric Constraints

- What is symmetric
 - A pair of input (x_i, x_j) is
 - positive symmetric on f_p if $f_p(\vec{x}|_{x_i=0, x_j=1}) = f_p(\vec{x}|_{x_i=1, x_j=0})$ for any \vec{x} .
 - negative symmetric on f_p if $f_p(\vec{x}|_{x_i=0, x_j=0}) = f_p(\vec{x}|_{x_i=1, x_j=1})$ for any \vec{x} .
- Symmetric inputs can only be bound to symmetric inputs
 - True in NP problems
 - Not in NP3
 - For example, given g = (y₁⊕y₂) ∧ y₃, if we bind y₁ and y₂ to the same constant or same input, y₃ will become redundant to g

Input Symmetric Constraints

• In NP

- SymmSign for each input, it's a sequence of number.
 - SymmSign(2i) (SymmSign(2i + 1)) means the number of inputs it's positive (negative) symmetric with on output i.
 - For any pair of matched outputs (f_p, g_q) whose functional support sizes are the same, two inputs can be matched if and only if SymmSign(2p) = SymmSign(2q) and SymmSign(2p + 1) = SymmSign(2q + 1)
- Fast matching on inputs symmetric to all outputs
- In NP3

Input Symmetric Constraints

- In NP
- In NP3
 - Find symmetric groups that cannot be broken in circuit 1
 - Build symmetric constraints on these groups

Case#	With	symm	Without symm		
	Score	Time(s)	Score	Time(s)	
12	60	29	-	-	
14	84	324	36	1391	
15	120	38	120	99	
17	120	3	120	73	
19	120	82	36	75	
20	108	479	96	188	
22	60	25	-	-	

Experimental Result

Case#	Ours Score Time(s)		1st Place	2nd Place	3rd Place	[19]	
			Score	Score	Score	Score	Time(s)
0	25	1	25	25	25	25	1
1	192	18	192	192	192	48	17
2	192	13	192	192	192	36	5
3	180	57	180	136	180	132	9
4	192	3	192	192	192	36	10
5	-	-	-	-	-	-	-
6	-	-	-	-	-	-	-
7	-	-	-	-	-	-	-
8	-	-	-	-	-	-	-
9	-	-	-	-	-	-	-
10	24	1	24	24	24	24	1
11	-	-	-	-	-	-	-
12	60	29	60	60	60	-	-
13	120	718	120	-	-	-	-

Case#	Ours		1st Place	2nd Place	3rd Place [19		9]
	Score	Time(s)	Score	Score	Score	Score	Time(s)
14	84	1	84	84	84	-	-
15	120	1	120	120	120	60	2
16	96	22	96	96	96	96	6
17	120	3	120	120	120	-	-
18	-	-	-	-	-	-	-
19	120	82	-	24	-	-	-
20	108	479	24	48	-	12	20
21	-	-	-	-	-	-	-
22	60	24	60	48	60	-	-
23	-	-	-	-	-	-	-
24	-	-	-	-	-	-	-
25	192	98	192	108	73	-	-
26	120	1	120	0	0	-	-
Total	2005	-	1801	1469	1418	469	_

Conclusion

- A two-step search engine to solve large scale Boolean matching under NP3 equivalence is proposed.
- Several heuristics are used to accelerate the searching process, which include modifying the matching order of output pairs, output grouping, and output group signature.
- New constraints are proposed to solve the Boolean matching problem under NP3 equivalence, which include support group size dependency constraints and symmetry related constraints.

Thanks

香港中文大學 The Chinese University of Hong Kong

Appendix

$$score = \sum_{i=0}^{m_o} q(f_i), \tag{6}$$

where f_i denote the *i*th primary output of *ckt0* and q(fi) is calculated as Equation (7).

$$q(f_i) = \begin{cases} K + \sum_{j=1}^{n_O} (c_{j,i} + d_{j,i}), & \text{if } \sum_{j=1}^{n_O} (c_{j,i} + d_{j,i}) \ge 1, \\ 0, & \text{otherwise.} \end{cases}$$

(7)