
Cost-Effective Error Detection through Mersenne Modulo Shadow Datapaths

Keith Campbell, Chen-Hsuan Lin, Deming Chen
University of Illinois at Urbana-Champaign

2

Motivation

3

Computation Efficiency
▪ Problems

▪ Demand for more computation density
▪ Demand for more performance per watt

▪ Solutions
▪ Scale transistors

▪ Use custom hardware
▪ Accelerators in SoCs

▪ FPGAs in datacenters

▪ 3D Stacking

~20%	CPU
~40%  
Accelerators

~20%	GPU
Apple	A10	
Fusion	SoC	

(2016)

End of Dennard Scaling

4

Hardware Reliability
▪ Problems

▪ Transistor wear-out

▪ Soft errors

▪ Timing errors

▪ Electromigration

▪ Solutions

▪ Modular / time  
redundancy

▪ Razor logic

▪ Flip-flop hardening

▪ Parity

▪ Algorithm-Based Fault
Tolerance (ABFT)

Has 2–3⨉ cost.

Adds timing constraints,
limits fault types.

Does not protect
combinational logic.
Expensive across computation.

Adds memory accesses,
limited to matrices.

Power Thermal

Hot Spots

5

Our Approach: Modulo Shadow Datapaths
▪ Small (2-8 bit) modulo 2n-1 checksums

▪ Like ECC, but for computation

▪ Minimum assumptions about fault behavior
▪ Protect against bits flips anytime, anywhere

▪ Focus on complex datapaths

▪ Maximum cost-effectiveness
▪ Rethink gate-level architecture

▪ 6–10% area cost for 3–61⨉ reliability benefit

▪ 15–20% area cost for 121–2,477⨉ reliability benefit

6

What is a shadow datapath?
Given a datapath D, we define a
shadow datapath D’ as a redundant
datapath that performs a similar
computation as D, but with compressed
versions of the inputs and outputs.

D

x

y

a

b

D’
x’

y’

a’

b’

▪ A reduction function maps inputs and
outputs to shadow inputs and outputs.

▪ Shadow outputs are computed
redundantly, enabling output checking

x’	←	reduce(x)	
y’	←	reduce(y)

a’	?=	reduce(a)	
b’	?=	reduce(b)

In	math	speak:	D’	does	computation	in	
a	homomorphism	of	the	algebra	of	D.

0

1

2

34

5

6

7

8

9

1011

12

13

14

15

7

What is modulo arithmetic?

mod 7

Arithmetic	with	the	hands	of	a	clock

12 3

15
+

5 3

1
+

8

How do modulo shadow datapaths work?

%3

%3

%3

⨉

+ =

+

⨉

12

-1

2

11

-1

2

2

11

0

2
1

1

0

-11

Checksum
Correct

9

How do modulo shadow datapaths work?

%3

%3

%3

⨉

+ =

+

⨉

12

-1

2

15

-1

2

2

0

2
1

0

1

-15
15!

Fault!

Error
Detected!

10

Modulo Arithmetic: Existing Solutions

▪ Lookup-table based approach for mod-3
(DAC’15)

▪ Interleaved full adders and inverters for mod-3
reduction (Piestrak et al., EUSIPCO’98)

▪ Signed-digit architecture  
(Wei et. al., JSCS’03)

▪ Modulo exponentiation architectures for
cryptography

Exponential scaling to wider bases

Trick only works for mod-3

Requires 2 bits per digit

Highly specialized algorithms

11

Mersenne Modulo Hardware Architectures

12

Previous Modulo Arithmetic Design (DAC’15)

▪ Cost is dominated by reducer
functional units

▪ Traditional design is a tree of
modulo adders

▪ Cost increases exponentially
with larger bases

▪ Not a typical pattern for logic
synthesis tools

+3 +3 +3 +3

+3 +3
+3

16

22 22 2222

2

x

x mod 3

13

New Wallace-Tree Like Reduction Strategy

2 1
2 1
2 1
2 1

128 64 32 16 8 4 2 1

8-bit unsigned input

2 1

2 1
4 2

2 1

2 1
12 2 1

4 2
2 1
12

2 x FAs
2 x FAs

2 1 2 1 2 1 2 1

Map to mod-3
bit weights

14

New Reducer Design

▪ Almost all full adders (standard cells)

▪ Extends to any Mersenne number
base (2n-1)
▪ mod-7, mod-15, mod-31, etc.

▪ Each full-adder reduces (eliminates)
one bit

▪ Fixed area cost for given input width

16x

x mod 3

2xFAs

2xFAs 2xFAs

2xFAs 2xFAs

2xFAs

add mod 3

15

New Modulo Adder Design

▪ Ripple-carry adder with a “wraparound” twist

▪ 8 = 1 (mod 7)

▪ Carry circulation eventually stops

▪ Output not normalized

▪ Two representations for “0”: 000 and 111

a
b

a + b (mod 7)

FA FA HA

HAHA

16

New Modulo Multiplier Design

▪ Array multiplier with a
“wraparound” twist

▪ Leverage reduction technique
to reduce product bits

a
b

4 2 1
1

2

4

ab (mod 7)

3xFAs

add mod 7

4 2 1

17

Cost-Effectiveness Results

18

FuncJonal	
Unit

DAC’15 Ours Difference
Area Delay Area Delay Area Delay

Mod-3 
(2-bits)

add 8.30 0.09 12.76 0.13 53.7% 42.9%

subtract 8.30 0.09 14.02 0.15 68.9% 60.4%

mulJply 4.47 0.04 17.84 0.16 299.3% 292.7%

reduce 177.80 0.73 155.56 0.39 -12.5% -47.1%

Mod-7 
(3-bits)

add 55.86 0.32 21.06 0.21 -62.3% -35.8%

subtract 59.69 0.33 22.95 0.22 -61.6% -32.7%

mulJply 30.01 0.21 47.79 0.30 59.2% 42.3%

reduce 493.18 1.27 153.64 0.61 -68.8% -52.0%

Mod-15 
(4-bits)

add 188.01 0.46 29.33 0.27 -84.4% -41.6%

subtract 192.80 0.53 31.85 0.29 -83.5% -46.0%

mulJply 133.43 0.51 90.45 0.42 -32.2% -16.8%

reduce 687.57 1.55 151.73 0.53 -77.9% -66.1%

▪ Large reductions in
reducer cost

▪ New designs scale well to
larger Mersenne bases

45nm ARM technology library Area unit: µm2 Delay unit: ns

Functional-Unit Level Cost (32-bit	main	datapath)

19

▪ Reliability models not created equal

▪ Ad-hoc error injection
▪ Error injection method does not model real faults.

▪ Assumptions about fault behavior
▪ “Soft errors only affect flip-flops.”

▪ Specialized to a particular kind of fault
▪ Stuck-at faults

▪ Timing errors

Aside: Reliability Evaluation

Did you forget Murphy’s law?

20

▪ Model Single-Event Transients (SETs)
▪ Flip random gate output at random cycle

▪ Single bit flip for each experiment

▪ All gates are sampled
▪ Both combinational and sequential logic

▪ Both main and shadow datapaths

▪ Harder test than other fault models
▪ Stuck-at faults last multiple cycles

▪ Superset of flip-flop bit flips

▪ Reliability Metric: probability of undetected error

Reliability Evaluation: Our Approach

21

Self-Checking Multiply Accumulate (MAC) Design
▪ Reducers double as summation blocks

▪ Negation = Bitwise NOT

▪ Avoid reduction below 2n bits
▪ Similar to carry save

▪ Zero comparator optimized for 2n bit input
▪ Handles non-normalized input

▪ Shadow datapath uses only 1⨉ gates

▪ Area and energy efficient

⨉

+

%M %M

%M

= 0

n n

n2

2n

a b c

a ⨉ b + c error

%M

2n

2n

M	=	2n-1

22

Self-Checking MAC Cost-Effectiveness

Delay Cost

D
el

ay
 O

ve
rh

ea
d

(M
A

C
 =

 1
)

0.0

0.5

1.0

1.5

2.0

Shadow width (bits)

2 3 4 5 6 7 8

8-bit 16-bit 32-bit 64-bit

Area Cost

A
re

a
O

ve
rh

ea
d

(%
)

0

10

20

30

40

50

60

Shadow width (bits)

2 3 4 5 6 7 8

Reliability Benefit

R
el

ia
bi

lit
y

Im
pr

v.
 (t

im
es

)

1

10

100

1k

10k

Shadow width (bits)

2 3 4 5 6 7 8

Datapath width:

23

▪ Error detection should be integrated into a
higher-level recovery strategy
▪ Restart the accelerator

▪ Flush the pipeline

▪ Rollback to a checkpoint

Aside: Error Recovery

24

Adding pipeline stages
⨉

+

%M %M

%M

= 0

n n

n2

2n

a b c

a ⨉ b + c

error

2n

2n

%M
▪ Bake inverters into flip-flops

▪ Error signal has 2-cycle delay
▪ Not in the critical path in error-free

operation

▪ Target clock period is minimum delay of
original MAC

Cycle	boundary

25

Pipelined MAC Cost-Effectiveness

Delay Cost

C
lo

ck
 O

ve
rh

ea
d

(%
)

0

10

20

30

40

50

60

Shadow width (bits)

2 3 4 5 6 7 8

8-bit 16-bit 32-bit 64-bit

Reliability Benefit

R
el

ia
bi

lit
y

Im
pr

v.
 (t

im
es

)

1

10

100

1k

10k

Shadow width (bits)

2 3 4 5 6 7 8

Area Cost

A
re

a
O

ve
rh

ea
d

(%
)

0

10

20

30

40

50

60

Shadow width (bits)

2 3 4 5 6 7 8

Datapath width:

26

▪ Clock period target is very aggressive: single multiplier

▪ Pushing shadow datapath fmax higher is possible:
▪ Retime flip-flops

▪ Resize gates

▪ Add pipeline stages

Aside: Pushing Maximum Performance

27

Self-Checking Linear Algebra

%M

n2

2n

= 0

a = (a1 , a2 , a3)

a ∙ b

error

a ∙ b = a1b1 +
a2b2 + a3b3

%M %M

n n

%M %M

n n

%M %M

n n

n2n2

b = (b1 , b2 , b3)

a1 a2 a3 b1 b3b2

%M

2n

= 0

a = (a1 , a2 , a3)

sa

error

sa = (sa1 , sa2 ,
sa3)

%M %M %M %M

n2

s

a1 a2 a3s

%M

2n

= 0

n2

%M

2n

= 0

n2

nnnn

sa1
sa2

sa3

Scalar	
⨉	

Vector
Inner	

Product

28

Linear Algebra Primitive Cost Effectiveness

Area Cost

A
re

a
O

ve
rh

ea
d

(%
)

0

10

20

30

40

50

60

Shadow width (bits)

2 3 4 5 6 7 8

Delay Cost

C
lo

ck
 O

ve
rh

ea
d

(%
)

0

10

20

30

40

50

60

Shadow width (bits)

2 3 4 5 6 7 8

inner product outer product scalar ⨉ vector vector ⨉ matrix matrix ⨉ matrix

Reliability Benefit

R
el

ia
bi

lit
y

Im
pr

v.
 (t

im
es

)

1

10

100

1k

10k

Shadow width (bits)

2 3 4 5 6 7 8

(32-bit	datapath)

29

Conclusions: Modulo Shadow Datapaths
▪ Revisited gate-level optimization

▪ Found significant savings

▪ Implemented self-checking linear algebra
▪ Key application for accelerators

▪ Considered single-event transients (SETs)
▪ Hard fault to detect

▪ Technique is cost-effective
▪ 6–10% area cost for 3–61⨉ reliability benefit

▪ 15–20% area cost for 121–2,477⨉ reliability benefit

▪ Future work
▪ Fixed-point optimization

▪ Synthesis automation

▪ Other kinds of shadow
datapaths

