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Motivation
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Computation Efficiency
▪ Problems 

▪ Demand for more computation density 
▪ Demand for more performance per watt 

▪ Solutions 
▪ Scale transistors 

▪ Use custom hardware 
▪ Accelerators in SoCs 

▪ FPGAs in datacenters 

▪ 3D Stacking

~20%	CPU
~40%  
Accelerators

~20%	GPU
Apple	A10	
Fusion	SoC	

(2016)

End of Dennard Scaling
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Hardware Reliability
▪ Problems 

▪ Transistor wear-out 

▪ Soft errors 

▪ Timing errors 

▪ Electromigration

▪ Solutions 

▪ Modular / time  
redundancy 

▪ Razor logic 

▪ Flip-flop hardening 

▪ Parity 

▪ Algorithm-Based Fault 
Tolerance (ABFT)

Has 2–3⨉ cost.

Adds timing constraints, 
limits fault types.

Does not protect 
combinational logic.
Expensive across computation.

Adds memory accesses, 
limited to matrices.

Power Thermal

Hot Spots
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Our Approach: Modulo Shadow Datapaths
▪ Small (2-8 bit) modulo 2n-1 checksums 

▪ Like ECC, but for computation 

▪ Minimum assumptions about fault behavior 
▪ Protect against bits flips anytime, anywhere 

▪ Focus on complex datapaths 

▪ Maximum cost-effectiveness 
▪ Rethink gate-level architecture 

▪ 6–10% area cost for 3–61⨉ reliability benefit 

▪ 15–20% area cost for 121–2,477⨉ reliability benefit
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What is a shadow datapath?
Given a datapath D, we define a 
shadow datapath D’ as a redundant 
datapath that performs a similar 
computation as D, but with compressed 
versions of the inputs and outputs.

D

x

y

a

b

D’
x’

y’

a’

b’

▪ A reduction function maps inputs and 
outputs to shadow inputs and outputs. 

▪ Shadow outputs are computed 
redundantly, enabling output checking

x’	←	reduce(x)	
y’	←	reduce(y)

a’	?=	reduce(a)	
b’	?=	reduce(b)

In	math	speak:	D’	does	computation	in	
a	homomorphism	of	the	algebra	of	D.
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What is modulo arithmetic?

mod 7

Arithmetic	with	the	hands	of	a	clock

12 3

15
+

5 3

1
+
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How do modulo shadow datapaths work?
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How do modulo shadow datapaths work?
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Modulo Arithmetic: Existing Solutions

▪ Lookup-table based approach for mod-3 
(DAC’15) 

▪ Interleaved full adders and inverters for mod-3 
reduction (Piestrak et al., EUSIPCO’98) 

▪ Signed-digit architecture  
(Wei et. al., JSCS’03) 

▪ Modulo exponentiation architectures for 
cryptography

Exponential scaling to wider bases

Trick only works for mod-3

Requires 2 bits per digit

Highly specialized algorithms
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Mersenne Modulo Hardware Architectures
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Previous Modulo Arithmetic Design (DAC’15)

▪ Cost is dominated by reducer 
functional units 

▪ Traditional design is a tree of 
modulo adders 

▪ Cost increases exponentially 
with larger bases 

▪ Not a typical pattern for logic 
synthesis tools

+3 +3 +3 +3

+3 +3
+3

16

22 22 2222

2

x

x mod 3
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New Wallace-Tree Like Reduction Strategy

2 1
2 1
2 1
2 1

128 64 32 16 8 4 2 1

8-bit unsigned input

2 1

2 1
4 2

2 1

2 1
12 2 1

4 2
2 1
12

2 x FAs
2 x FAs

2 1 2 1 2 1 2 1

Map to mod-3 
bit weights
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New Reducer Design

▪ Almost all full adders (standard cells) 

▪ Extends to any Mersenne number 
base (2n-1) 
▪ mod-7, mod-15, mod-31, etc. 

▪ Each full-adder reduces (eliminates) 
one bit 

▪ Fixed area cost for given input width

16x

x mod 3

2xFAs

2xFAs 2xFAs

2xFAs 2xFAs

2xFAs

add mod 3
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New Modulo Adder Design

▪ Ripple-carry adder with a “wraparound” twist 

▪ 8 = 1 (mod 7) 

▪ Carry circulation eventually stops 

▪ Output not normalized 

▪ Two representations for “0”: 000 and 111

a
b

a + b (mod 7) 

FA FA HA

HAHA
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New Modulo Multiplier Design

▪ Array multiplier with a 
“wraparound” twist 

▪ Leverage reduction technique 
to reduce product bits

a
b

4 2 1
1

2

4

ab (mod 7)

3xFAs

add mod 7

4 2 1
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Cost-Effectiveness Results
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FuncJonal	
Unit

DAC’15 Ours Difference
Area Delay Area Delay Area Delay

Mod-3 
(2-bits)

add 8.30 0.09 12.76 0.13 53.7% 42.9%

subtract 8.30 0.09 14.02 0.15 68.9% 60.4%

mulJply 4.47 0.04 17.84 0.16 299.3% 292.7%

reduce 177.80 0.73 155.56 0.39 -12.5% -47.1%

Mod-7 
(3-bits)

add 55.86 0.32 21.06 0.21 -62.3% -35.8%

subtract 59.69 0.33 22.95 0.22 -61.6% -32.7%

mulJply 30.01 0.21 47.79 0.30 59.2% 42.3%

reduce 493.18 1.27 153.64 0.61 -68.8% -52.0%

Mod-15 
(4-bits)

add 188.01 0.46 29.33 0.27 -84.4% -41.6%

subtract 192.80 0.53 31.85 0.29 -83.5% -46.0%

mulJply 133.43 0.51 90.45 0.42 -32.2% -16.8%

reduce 687.57 1.55 151.73 0.53 -77.9% -66.1%

▪ Large reductions in 
reducer cost 

▪ New designs scale well to 
larger Mersenne bases

45nm ARM technology library    Area unit: µm2    Delay unit: ns

Functional-Unit Level Cost (32-bit	main	datapath)
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▪ Reliability models not created equal 

▪ Ad-hoc error injection 
▪ Error injection method does not model real faults. 

▪ Assumptions about fault behavior 
▪ “Soft errors only affect flip-flops.” 

▪ Specialized to a particular kind of fault 
▪ Stuck-at faults 

▪ Timing errors

Aside: Reliability Evaluation

Did you forget Murphy’s law?
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▪ Model Single-Event Transients (SETs) 
▪ Flip random gate output at random cycle 

▪ Single bit flip for each experiment 

▪ All gates are sampled 
▪ Both combinational and sequential logic 

▪ Both main and shadow datapaths 

▪ Harder test than other fault models 
▪ Stuck-at faults last multiple cycles 

▪ Superset of flip-flop bit flips 

▪ Reliability Metric: probability of undetected error

Reliability Evaluation: Our Approach
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Self-Checking Multiply Accumulate (MAC) Design
▪ Reducers double as summation blocks 

▪ Negation = Bitwise NOT 

▪ Avoid reduction below 2n bits 
▪ Similar to carry save 

▪ Zero comparator optimized for 2n bit input 
▪ Handles non-normalized input 

▪ Shadow datapath uses only 1⨉ gates 

▪ Area and energy efficient

⨉

+

%M %M

%M

= 0

n n

n2

2n

a b c

a ⨉ b + c error

%M

2n

2n

M	=	2n-1
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Self-Checking MAC Cost-Effectiveness
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▪ Error detection should be integrated into a 
higher-level recovery strategy 
▪ Restart the accelerator 

▪ Flush the pipeline 

▪ Rollback to a checkpoint

Aside: Error Recovery
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Adding pipeline stages
⨉
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error

2n
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%M
▪ Bake inverters into flip-flops 

▪ Error signal has 2-cycle delay 
▪ Not in the critical path in error-free 

operation 

▪ Target clock period is minimum delay of 
original MAC

Cycle	boundary
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Pipelined MAC Cost-Effectiveness
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▪ Clock period target is very aggressive: single multiplier 

▪ Pushing shadow datapath fmax higher is possible: 
▪ Retime flip-flops 

▪ Resize gates  

▪ Add pipeline stages

Aside: Pushing Maximum Performance
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Self-Checking Linear Algebra
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Linear Algebra Primitive Cost Effectiveness
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Conclusions: Modulo Shadow Datapaths
▪ Revisited gate-level optimization 

▪ Found significant savings 

▪ Implemented self-checking linear algebra 
▪ Key application for accelerators 

▪ Considered single-event transients (SETs) 
▪ Hard fault to detect 

▪ Technique is cost-effective 
▪ 6–10% area cost for 3–61⨉ reliability benefit 

▪ 15–20% area cost for 121–2,477⨉ reliability benefit

▪ Future work 
▪ Fixed-point optimization 

▪ Synthesis automation 

▪ Other kinds of shadow 
datapaths


