Cost-Effective Error Detection through Mersenne Modulo Shadow Datapaths

Keith Campbell, Chen-Hsuan Lin, Deming Chen
University of lllinois at Urbana-Champaign

ECE ILLINOIS 15 ILLINOIS

Motivation

ECE ILLINOIS 2 1 ILLINOIS

: . | |
I Computation Efficiency M

= Problems (2016)

= Demand for more computation density

= Demand for more performance per watt ~20% CPU

= Solutions ,
= Scale transistors | End of Dennard Scaling

= Use custom hardware

[| Accele rato rS in SOCS Ho Way of biusless tl;lllll:lll

HOME INDUSTRY INSIDER v INSIGHTS DIARY MAGAZINE v PRESS RELEASE v CONFERENCES

= FPGAs in datacenters
= 3D Stacking

ECE ILLINOIS 3

15 ILLINOIS

I Hardware Reliability

= Problems = Solutions
= [ransistor wear-out = Modular/ time
Has 2-3Xx cost.
= Soft errors redundancy
C . : Adds timing constraints,
= Timing errors = Razor logic limits fault types.
= Electromigration » Flip-flop hardening Does not protect
combinational logic.
° = Parity Expensive across computation.
u A|gOFIthm-BaSGd FaUIt Adds memory accesses,
e Tolerance (ABFT) limited to matrices.
Power Thermal
Hot Spots

ECE ILLINOIS 4 15 ILLINOIS

I Our Approach: Modulo Shadow Datapaths

= Small (2-8 bit) modulo 21 checksums
= Like ECC, but for computation
= Minimum assumptions about fault behavior
= Protect against bits flips anytime, anywhere
= Focus on complex datapaths
= Maximum cost-effectiveness
= Rethink gate-level architecture
= 6-10% area cost for 3—61X reliability benefit

= 15-20% area cost for 121-2,477x reliability benefit

ECE ILLINOIS > 15 ILLINOIS

I What is a shadow datapath? 1 math speak: D’ does computation i

a homomorphism of the algebra of D.

Given a datapath D, we define a
shadow datapath D’ as a redundant
datapath that performs a similar

= A reduction function maps inputs and
outputs to shadow inputs and outputs.

computation as D, but with compressed = Shadow outputs are computed
versions of the inputs and outputs. redundantly, enabling output checking
XI al
X a — , =
y’ D b’
y b
x’ € reduce(x) a’ ?=reduce(a)
y’ €& reduce(y) b’ ?= reduce(b)

ECE ILLINOIS ¢ 15 ILLINOIS

I What is modulo arithmetic?

Arithmetic with the hands of a clock

12 3
\V
\ + mod 7
1
15

I How do modulo shadow datapaths work?

12 U ’>\ 11 11
+ >
L
-1 [>/ > >
1 >] -11
o NGy

ECE ILLINOIS 8 15 ILLINOIS

I How do modulo shadow datapaths work?

12 [}

15

S
L

10

ECE ILLINOIS ° 15 ILLINOIS

Modulo Arithmetic: Existing Solutions

= Lookup-table based approach for mod-3

(DAC’15) Exponential scaling to wider bases
= |[nterleaved full adders and inverters for mod-3 _

reduction (Piestrak et al., EUSIPCO’98) Trick only works for mod-3
= Signed-digit architecture

(Wei et. al., JSCS’03) Requires 2 bits per digit
= Modulo exponentiation architectures for

cryptography Highly specialized algorithms

ECE ILLINOIS 10 15 ILLINOIS

Mersenne Modulo Hardware Architectures

ECE ILLINOIS T 1 ILLINOIS

| Previous Modulo Arithmetic Design (DAC’15)

X 16 ,

g ol ol ol ol ol ol ol o Cost is dominated by reducer
functional units
= Traditional design is a tree of
modulo adders
e\ A/e « Cost increases exponentially
with larger bases
= Not a typical pattern for logic
x mod 3 synthesis tools

ECE ILLINOIS 12 15 ILLINOIS

2

I New Wallace-Tree Like Reduction Strategy

8-bit unsigned input

128164 (32116 8 |4 |2 |1 Map to mod-3
bit weights

2 (12711211121

\4
2 [1
212XFA>S 211 2 (1
2 x FA
2|1 2 — [2]3] 2P 2|1 mEn
211 211 2|1 2 2

ECE ILLINOIS 13 15 ILLINOIS

2xFAs 2xFAs

I New Reducer Design T T

1T

= Almost all full adders (standard cells) IxFAS IxFAS
= Extends to any Mersenne number l l
base (2"-1) v
2xFAs
= mod-7, mod-15, mod-31, etc.
= Each full-adder reduces (eliminates) l l i
one bit .
= Fixed area cost for given input width l l
add mod 3
» x mod 3

ECE ILLINOIS 14 15 ILLINOIS

I New Modulo Adder Design

= Ripple-carry adder with a “wraparound” twist
= 8=1(mod7)
= Carry circulation eventually stops

= Qutput not normalized

= [wo representations for “0”: 000 and 111

a+b (mod7)

ECE ILLINOIS 15 15 ILLINOIS

| New Modulo Multiplier Design

$
R
R i

= Array multiplier with a
“‘wraparound” twist

1l

AN

= Leverage reduction technique 4 7 3xFAs
to reduce product bits l l
add mod 7
— >
ab (mod 7)

ECE ILLINOIS 16 15 ILLINOIS

Cost-Effectiveness Results

ECE ILLINOIS 7 1 ILLINOIS

I Functional-Unit Level Cost (32-bit main datapath)

= Large reductions in
reducer cost

= New designs scale well to
larger Mersenne bases

ECE ILLINOIS 18

Functional DAC’15 Ours Difference
Unit Area Delay | Area Delay | Area Delay
add 8.30 0.09 12.76 | 0.13 | 53.7% | 42.9%
Mod-3 | subtract 8.30 0.09 14.02 | 0.15 | 68.9% | 60.4%
(2-bits) | multiply 4.47 0.04 17.84 | 0.16 | 299.3% | 292.7%
reduce | 177.80 | 0.73 | 155.56 | 0.39 | -12.5% | -47.1%
add 55.86 0.32 21.06 | 0.21 | -62.3% | -35.8%
Mod-7 | subtract | 59.69 0.33 2295 | 0.22 | -61.6% | -32.7%
(3-bits) | multiply | 30.01 021 | 47.79 | 030 | 59.2% | 42.3%
reduce | 493.18 | 1.27 | 153.64 | 0.61 | -68.8% | -52.0%
add 188.01 | 0.46 | 29.33 | 0.27 | -84.4% | -41.6%
Mod-15 | subtract | 192.80 | 0.53 31.85 | 0.29 | -83.5% | -46.0%
(4-bits) | multiply | 133.43 | 0.51 | 90.45 | 0.42 | -32.2% | -16.8%
reduce | 687.57 | 1.55 | 151.73 | 0.53 | -77.9% | -66.1%

45nm ARM technology library = Area unit: gm?

Delay unit: ns

15 ILLINOIS

| Aside: Reliability Evaluation

= Reliability models not created equal

= Ad-hoc error injection
= Errorinjection method does not model real faults.
= Assumptions about fault behavior
“Soft errors only affect flip-flops.” Did you forget Murphy’s law?
= Specialized to a particular kind of fault
= Stuck-at faults

= Timing errors

ECE ILLINOIS 19 15 ILLINOIS

| Reliability Evaluation: Our Approach

= Model Single-Event Transients (SETs)
= Flip random gate output at random cycle
= Single bit flip for each experiment
= All gates are sampled
= Both combinational and sequential logic
= Both main and shadow datapaths
= Harder test than other fault models
= Stuck-at faults last multiple cycles

= Superset of flip-flop bit flips

Reliability Metric: probability of undetected error

ECE ILLINOIS 20 15 ILLINOIS

| Self-Checking Multiply Accumulate (MAC) Design

a b c

= Reducers double as summation blocks

= Negation = Bitwise NOT
= Avoid reduction below 2n bits i\/}
X
A

= Similar to carry save /
= Zero comparator optimized for 2n bit input \L/

= Handles non-normalized input

» Shadow datapath uses only 1x gates

- M = 2n-1

!CI‘I‘OI’
ECE ILLINOIS 2 15 ILLINOIS

= Area and energy efficient

v

aXb+c

I Self-Checking MAC Cost-Effectiveness

Datapath width: ©O 8-bit O 16-bit 32-bit O 64-bit
Area Cost Delay Cost Reliability Benefit
60 20 10k
~ 50 ” &
> 2 15 C’/Q/o g 1k
< 9 S,
5 30 s 1.0 £ 100
3 E o—8 5 o o2 =
s 20 g =
5 2 0.5 s 10
A
0 0.0 1
2 3 4 5 6 7 8 2 3 4 5 6 7 8 2 3 4 5 6 7 8
Shadow width (bits) Shadow width (bits) Shadow width (bits)

ECE ILLINOIS 22 15 ILLINOIS

I Aside: Error Recovery

= Error detection should be integrated into a
higher-level recovery strategy

= Restart the accelerator
= Flush the pipeline

= Rollback to a checkpoint

ECE ILLINOIS 2 15 ILLINOIS

I Adding pipeline stages

= Bake inverters into flip-flops

= Error signal has 2-cycle delay

= Notin the critical path in error-free
operation

= Target clock period is minimum delay of
original MAC

Cycle boundary

CITOoTr

ECE ILLINOIS 2 15 ILLINOIS

I Pipelined MAC Cost-Effectiveness

Area Overhead (%)

Datapath width: O 8-bit

Area Cost

60 60

50 g 50

40 = 40
2

30 S 30
O

20 <
2

10 g—o—o—0—0—0—0 © 10

0 0

2 3 4 5 6 7 8 2
Shadow width (bits)

ECE ILLINOIS 2

O 16-bit
Delay Cost

i

32-bit

3 4 5 6 7
Shadow width (bits)

8

O 64-bit
Reliability Benefit
10k

1k

100

//""’/H/Q

2 3 4 5 6 7 8
Shadow width (bits)

10

Reliability Imprv. (times)

1

15 ILLINOIS

I Aside: Pushing Maximum Performance

= Clock period target is very aggressive: single multiplier
= Pushing shadow datapath fmax higher is possible:

= Retime flip-flops

= Resize gates

= Add pipeline stages

ECE ILLINOIS 2% 15 ILLINOIS

I Self-Checking Linear Algebra o

a=(;,a,,a3 b=(b;,b,,by Y
sa =
Y
a-b=aby+ | Wl S N W N N T
Scalar
X

Inner
Product

Vector

ECE ILLINOIS % 15 ILLINOIS

I Linear Algebra Primitive Cost Effectiveness (z2-bit datapath)

O 1inner product ‘O outer product scalar X vector ‘O vector X matrix ‘O matrix X matrix
Area Cost Delay Cost Reliability Benefit
60 60 10k
~ 50 < 50 g
> = = 1k
<
% 40 3 40 >
< = =
5 30 o 30 g 100
S S B
< 20 ~< 20 =
Z = S 10
10 © 10 ©
R
0 0 1
2 3 4 5 6 T 8 2 3 4 5 6 T 8 2 3 4 5 6 T 8
Shadow width (bits) Shadow width (bits) Shadow width (bits)

ECE ILLINOIS 28 15 ILLINOIS

I Conclusions: Modulo Shadow Datapaths

= Revisited gate-level optimization = Future work

= Found significant savings = Fixed-point optimization
= Implemented self-checking linear algebra = Synthesis automation

= Key application for accelerators = Other kinds of shadow
= Considered single-event transients (SETSs) datapaths

= Hard fault to detect
Technique is cost-effective

= 6-10% area cost for 3—61X reliability benefit
= 15-20% area cost for 121-2,477x reliability benefit

ECE ILLINOIS % 15 ILLINOIS

