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Background: Thin-film Transistor (TFT)
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TFTs are essential to flexible and sensing applications.
However, TFTs have yield problem and are sensitive to temperature and strain...
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Temperature for OTFT: >100% change @200K range Bending for OTFT: ~20% change@15mm radius 3



Temp and strain effects on TFTs

Range of change in mobility of TFT technologies [11]
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Circuit level optimization to release some of these problems?




Motivation: TFT logic array challenges

VDD

Inkjet-configurable gate array (IGA)

our 111 = B Transistor level implementation
VoD -QCEITfaea B Pre-fabricated interconnections
Dimmimmimmim = et B Large areaoverhead
Drive  Load J. Carrabina et al., TETC 2016
S N e— N E Sea-Of-Transmission Gates (SOTG)
J‘E | ‘%@E B Gate level implementation
" higgmm E :{csu}:m . ia ] B Complementary devices
stﬁ.m: 1 NSW B Routability problem

Transistor-level sch ematic—j \ Symbol definition

K. Ishida et al, JISSC 2011

Logic array of TFT

= Low cost: print wire with inkjet printer and metallic inks “at home”
= Customizable: similar to the concept of FPGAs

= Robust: programmability to overcome yield problem

Mapping algorithms for logic array are still missing.




Pseudo-CMQOS logic array cell
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Interconnect architecture
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= Pre-fabricated wires (GWs) ensure the routability.
= Printed wires (PWs) reduce the area overhead.

Qinghang Zhao et al., DAC 2016
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Process parameters

Array architecture comparison
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Area and routability comparison with IGA and SOTG

Circuit IGA [7] SOTG (8] Pseudo-CMOS logic
TFT | Area' | TFT | Area' | TFT | Areal
RO15 60 1344 90 80 90 205
Counter4 | 200 4375 144 128 216 736
MULS3 414 | 20400 | -2 —2 486 | 3570
! me . g not routable. Qinghang Zhao et al., DAC 2016

= Noise margin is improved by pseudo-CMOS logic with unipolar devices
= Compared with IGA, 80% area is reduced with pseudo-CMOS logic array.
= Compared with SOTG, the routability is ensured.
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Design flow
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Cell mapping algorithms
consider temp & strain effects

The defects and performance of

TFTs/array cells are

identified

through test & characterization,
hence improving circuit yield.
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Mapping problem formulation

> Assumption
Logic array has been tested and characterized

>

Cin
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Netlist

Logic array

= Strain & temp condition are pre-determined

Input

= Gate level circuit netlist represented by a graph
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Parameters of logic array including

Array sizes and H-wire number
Size of pads and vias, pitch between pads
Capacity of each rows |R;| determined by test

Mobility weights w;; evaluated by strain and
temperature (w;; shows average mobility of one cell)

Design paameters of layout
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Problem formulation in 2 steps

‘ 0000000000000
i e e DL O s e S

A | ’? . / 8o o I’-fl-\‘:}ia ]
kz,' \III ;7 ' P-’l

n a=EDe
o\,

Cin

Y

P D 0 P4
X10 p—2 o—X 15> |
| x10p . o 'ﬂml'ﬂ'ﬂmm'r-Pad\.D

logic arra
G(V,E) o

Inter-row problem (clustering)

= Minimum Cut: Given G = (V, E), partition V into k disjoint sets {G;, ..., Gy} such
that the sum of e(G;, Gy ), i.e., the number of edges in {(x,y) EE|x € G;, y €
G}, IS minimized

« Capacity Constraints: |G;| < |R;|
= Intra-row problem (mapping)
= MAP: G - R,MAP(g;) = 1,Vg; € G,3r; ER
= Maximum flow: find a mapping function to maximum circuit performance
= Minimum cost: find a mapping function to minimize routing cost

Goal: Maximum circuit performance with temp & strain

consideration and enable routability.
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Algorithm for inter-row clustering

Circuit netlist
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Adjusted spectral clustering

Describe circuit with undirected graph
Compute normalized graph Laplacians
Compute first k eigenvectors as U € R™*¥
Let y; be the i-th row of U, cluster points y;
with k-means algorithm into k clusters
Adjustment according to row capacity, i.e.,
remove one farthest point in one cluster
to anther if needed

1.
2.
3.
4

5.

Q: How to improve circuit performance with

mobility variation 12




Algorithm for intra-row mapping

Adjustment according to capacity

Critical path (cp):
1-2-4-56->5->7-28
1-3-24-56->5->7-28

Sub-critical path (sp):
1-2->4-55-57-8
1-3-04-55-57-8
1-2-4-6-7-28
1-3-54-56-7-8

Define important degree of gate g;
d(g:) = al{cpklg; € cpi}| + bl{spklg; € spi}l,a > b
d(91) = d(g4) = d(g7) = d(gs)
> d(gs) = d(ge) > d(g2) = d(g3)

Key idea: improve circuit performance

with limited routing resource
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Intra-row mapping

1.
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il

Static timing analysis of netlist

Calculate important degree of each gate
Mapping in order according to d and mobility
weight w

GW assignment and one layer routing

If unroutable, take a heuristic method

while M AP.routability == False do
for each row R in logic array do
for each unrourable g; mapping te v; do
Find ri. € R that |w; — we| < 203
Exchange(w;, wy ) to calculate E.routrost,
if E.routcost < R.routcost then
MAP{g:) = re. MAP(g) = 14}
Update R.rouicost;
end
end

end
Increase(=g);

end
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Algorithm flow and a design case

| Circuit netlist, Logic array information | Array test, temp & strain evaluate...
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Experiment setup
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Experiment

Nearly same HPWL of
printed wire but 38% PI
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Comparison with [9] (DAC2017’s work) and this work
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*Performance Improvement (PI): (Delayofthis e 1) X 100%

*HPWL: Half perimeter wire length of printed wires

*VDD/VSS/GND/INPUT/OUTPUT terminals are not included in H-wire number 16



Conclusion

= Architecture of pseudo-CMOS logic array based on TFTs is
reviewed

= 2-steps mapping algorithms considering mechanical strain
and temperature effect on TFTs are proposed for a pseudo-
CMOS logic array

= Inter-row clustering algorithm to overcome the defected cells effect
= Intra-row mapping algorithm to deal with the mobility variation problem

= Experiment shows this work can effectively improve circuit
performance while enable routability
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