ASP-DAC 2018

Mechanical Strain and Temperature Optimization for Thin-Film Transistor Based Pseudo-CMOS Logic Array

Wenyu Sun, Qinghang Zhao, Fei Qiao, Tsung-Yi Ho, Xiaojun Guo, Huazhong Yang, and Yongpan Liu

ypliu@tsinghua.edu.cn

January 25, 2018

Outline

- Background and Motivation
- TFT based pseudo-CMOS logic array
 - Array circuit
 - Interconnect architecture
- Mapping problem formulation of logic array
- Mapping algorithms for logic array
- Experiments
- Conclusion

Background: Thin-film Transistor (TFT)

TFTs are essential to flexible and sensing applications.

However, TFTs have yield problem and are sensitive to temperature and strain...

Temperature for OTFT: >100% change @200K range

Bending for OTFT: ~20% change@15mm radius 3

Temp and strain effects on TFTs

Range of change in mobility of TFT technologies [11]

TFT technology	Compressive strain	Tensile strain
a-Si TFT	-26%	7.6%
OTFT	20%	-30%
poly-Si TFT	44%	-44%

Many works study the TFT mobility under temp & strain

Circuit level optimization to release some of these problems?

Motivation: TFT logic array challenges

SOTG V_{DD}-PSW PSW 3mm p-switch 6mm = IN ⊶ O OUT OUT INO n-switch L :20µm W:150um 6 transistors NSW 4 terminals NSW Symbol definition Transistor-level schematic

Inkjet-configurable gate array (IGA)

- Transistor level implementation
- Pre-fabricated interconnections
- Large area overhead

J. Carrabina et al., TETC 2016

Sea-Of-Transmission Gates (SOTG)

- Gate level implementation
- Complementary devices
- Routability problem

K. Ishida et al, JSSC 2011

Logic array of TFT

- Low cost: print wire with inkjet printer and metallic inks "at home"
- Customizable: similar to the concept of FPGAs
- Robust: programmability to overcome yield problem

Mapping algorithms for logic array are still missing.

Pseudo-CMOS logic array cell

VSS 🗕 GND

Qinghang Zhao et al., DAC 2016

Interconnect architecture

- Pre-fabricated wires (GWs) ensure the routability.
- Printed wires (PWs) reduce the area overhead.

Qinghang Zhao et al., DAC 2016

Array architecture comparison

Area and routability comparison with IGA and SOTG

Circuit	IGA [7]		SOTG [8]		Pseudo-CMOS logic	
Oncurt	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Area ¹	TFT	Area ¹	TFT	Area ¹
RO15	60	1344	90	80	90	205
Counter4	200	4375	144	128	216	736
MUL3	414	20400	_2	_2	486	3570
1 mm ² . 2 not routable. Qinghang Zhao et al. DA				po et al DAC (

Qinghang Zhao et al., DAC 2016

- Noise margin is improved by pseudo-CMOS logic with unipolar devices
- Compared with IGA, 80% area is reduced with pseudo-CMOS logic array.
- Compared with SOTG, the routability is ensured.

Design flow

Mapping problem formulation

Assumption

- Logic array has been tested and characterized
- Strain & temp condition are pre-determined

Input

- Gate level circuit netlist represented by a graph G(V, E)
- Parameters of logic array including
 - Array sizes and H-wire number
 - Size of pads and vias, pitch between pads
 - Capacity of each rows $|R_i|$ determined by test
 - Mobility weights w_{ij} evaluated by strain and temperature (w_{ij} shows average mobility of one cell)

Problem formulation in 2 steps

Inter-row problem (clustering)

- <u>Minimum Cut</u>: Given G = (V, E), partition V into k disjoint sets $\{G_1, ..., G_k\}$ such that the sum of $e(G_i, G_k)$, i.e., the number of edges in $\{(x, y) \in E | x \in G_i, y \in G_k\}$, is minimized
- Capacity Constraints: $|G_i| < |R_i|$

Intra-row problem (mapping)

- <u>MAP</u>: $G \to R, MAP(g_i) = r_j, \forall g_i \in G, \exists r_j \in R$
- <u>Maximum flow</u>: find a mapping function to maximum circuit performance
- <u>Minimum cost</u>: find a mapping function to minimize routing cost

Goal: Maximum circuit performance with temp & strain consideration and enable routability.

Algorithm for inter-row clustering

Circuit netlist

Simplyentialmlzeteringost

Adjustment according to capacity

Goal of spectral clustering:

$$Minimize \ RatioCut = \sum_{i=1}^{k} \frac{cut(A_i, \overline{A_i})}{|A_i|}$$

Adjusted spectral clustering

- 1. Describe circuit with undirected graph
- 2. Compute normalized graph Laplacians
- 3. Compute first *k* eigenvectors as $U \in \mathbb{R}^{n \times k}$
- 4. Let y_i be the *i*-th row of *U*, cluster points y_i with *k*-means algorithm into *k* clusters
- 5. Adjustment according to row capacity, i.e., remove one farthest point in one cluster to anther if needed

Q: How to improve circuit performance with mobility variation

Algorithm for intra-row mapping

Algorithm flow and a design case

Experiment setup

- Printed & all solution process
- p-type
- μ : 0.6cm²/Vs

- Level 40 HP TFT model
- VSS=-10 & VDD=5V
 - **Delay evaluated** by mobility weight

Experiment

Information of benchmark circuits

Circuit	# of INV	# of NAND	# of NOR	Array size
Adder2	8	4	4	2×10
Counter4	8	24	4	4×10
Mul3	36	33	12	9×10

*#:Number of

Trade off the routing resources and circuit performance effectively

Comparison with [9] (DAC2017's work) and this work

Circuit H	U wirec	HPWL($\times 10^5 \mu m$)		Critical Path Delay(μs)		DI
	n-wites	[9]	Proposed	[9]	Proposed	
Adder2	1	0.53	0.58	31.14	22.13	41%
	3	0.49	0.54	51.14		4170
Counter/	4	1.11	2.70	76.12	54.34	40%
Counter4	8	0.91	2.51	70.12	54.54	4070
Mul3	4	8.56	10.92	69.20	74.35	7%
	13	1.67	1.92		95.54	38%

*Performance Improvement (PI): $\left(\frac{Delay of [9]}{Delay of this work} - 1\right) \times 100\%$

*HPWL: Half perimeter wire length of printed wires

*VDD/VSS/GND/INPUT/OUTPUT terminals are not included in H-wire number

Conclusion

- Architecture of pseudo-CMOS logic array based on TFTs is reviewed
- 2-steps mapping algorithms considering mechanical strain and temperature effect on TFTs are proposed for a pseudo-CMOS logic array
 - Inter-row clustering algorithm to overcome the defected cells effect
 - Intra-row mapping algorithm to deal with the mobility variation problem
- Experiment shows this work can effectively improve circuit performance while enable routability

Reference

[1] E. Cantatore et al., "A 13.56-mhz rfid system based on organic transponders," IEEE Journal of Solid-State Circuits, vol. 42, no. 1, pp. 84–92, 2006.

[2] S. R. Forrest, "The path to ubiquitous and low-cost organic electronic appliances on plastic," Nature, vol. 428, no. 6986, pp. 911–8, 2004.

[3] Wong et al., Flexible electronics: materials and applications. Springer Science & Business Media, 2009, vol. 11.

[4] G. H, H. P. I et al., "Field-effect mobility of amorphous silicon thin-film transistors under strain," Journal of Non-Crystalline Solids, vol. 338, no. 1, pp. 732–735, 2004.

[5] H. Gleskova et al., "Electrical response of amorphous silicon thin-film transistors under mechanical strain," Journal of Applied Physics, vol. 92, no. 10, pp. 6224–6229, 2002.

[6] J. A. Letizia et al., "Variable temperature mobility analysis of n-channel, p-channel, and ambipolar organic field-effect transistors," Advanced Functional Materials, vol. 20, no. 1, pp. 50–58, 2010.

[7] J. Carrabina et al., "Inkjet-configurable gate arrays (iga)," IEEE Transactions on Emerging Topics in Computing, vol. PP, no. 99, pp. 1–1, 2017.

[8] K. Ishida et al., "User customizable logic paper (uclp) with sea-of transmission-gates (sotg) of 2-v organic cmos and inkjet printed interconnects," IEEE Journal of Solid-State Circuits, vol. 46, no. 1, pp. 285–292, 2011.

[9] Q. Zhao et al., "Design methodology for thin-film transistor based pseudo-cmos logic array with multi-layer interconnect architecture," in Design Automation Conference, 2017, p. 80.

[10] J.-L. Lin et al., "A novel cell placement algorithm for flexible tft circuit with mechanical strain and temperature consideration," in Asia and South Pacific Design Automation Conference. IEEE, 2013, pp. 491–496.

[11] Liu, Chester, et al. "Placement Optimization of Flexible TFT Digital Circuits." IEEE Design & Test 28.6(2011):24-31.

Q & A