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loT Market Growth by Market Segments 2015-2020

?:z}gm,re /: B2B segments will generate more than $300 billion annually by 2020, including about

385 billion in the industrial sector
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Maotes: Things and legacy hardware include semiconductors for sensing, communication, processing, memory and medules (boards for housing silicon); consumer loT devices
includes hobbyist drones, smart garments, smartwalches, sports watches, wearable cameras, wristbands, head-mounted displays, other fitness monitors; data services includes the

value of subsidized consumer loT devices

Sources: Gariner; IDC; Harbor; Cisco; Ericsson; Machina Research; Ovum; indusiry inferviews; Bain & Company




Intelligent loT Infrastructure with loT Nodes
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Intelligent Flexible Cloud

= Appiications run where the data Is. Independent of the network node
*  Heteregensous Compute Is distributed into the network
+  Metworks and Compute resources are both managed

and configured using standard IT technologies Compute

Devices Access Edge Aggregation Core Data Center

Scale-Down Power Consumption and Form Factor
Scale-Up from Littie Data to Blg Data
Decrease Latency

Source: ARM

lloT nodes and edges are capable of sensing and
performing applications and analytics locally
where the data is generated for actionable
insights. 1loT node/edge only updates key
information to the cloud with to enhance data
security, reduce latency, and save power.



Flexible Electronics for Edge Computing/loT

* Printable, light-weight and low-cost
 Bendable, stretchable, and durable
« Suitable for high-volume manufacturing

— Industrial-grade multi-jet printing

— Roll-to-roll imprinting (nano-to-micro scale)
« Complementary to Si-CMOS VLSI

— Low non-recursive expense (NRE) for small-volume high-variety

Cost per Unit Area

Flexible
Electronics

————————

Performance




Flexible Hybrid Electronics for Intelligent loT Nodes

—By heterogeneous integration of flexible active and passive devices (ex.
transistor, interconnect, resistor, capacitor, antenna, and battery etc) with
ultra-thin low-power silicon chips, our research goal is to bring the machine
Intelligence to various “things” and make them smarter with learning

— Soft contact lens
encapsulates electronics

Sensor
detects glucose in tears

— Chip & antenna

receives power and sends info

Google
Contact Lenses

Carbon-Nanotube Logic Glucose Sensor SOC 6



NextFlex is Established by US DoD/FlexTech in 2015

NEMTFLE

Mission: ABOUT NEXTFLEX $75M federal fund
Usher in the era of $181M with cost-share
“ eleCtroniCS On The formaﬂ_oanNextFIex_has beenlabeneﬂtFo the rapidly 2015 o 2020

everything” and advance ... : e O€If-SUStAINADbIe afterward
efficiency of our world ' :




Process Design Kit for Flexible Hybrid Electronics

GDSII, Gerber...
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o Transistor

Ref. NextFlexPC2.0 Proposal

» Open-source to NextFlex members



Open Ecosystem for Flexible Hybrid Electronics

« Create an ecosystem
connecting applications/product

SENobM vendors | Healtheare bRy CIEk
 Interface between system Ecosystem

architect/circuit designer and for FHE

manufacturer Industrial Energy
 Protecting IP from competitors; loT Efficiency

open-source for R&D purposes



Driving Technology:
Carbon-nanotube Flexible Electronics



Comparison Among Flexible Thin-Film Transistors

Process
Temperature
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Technology
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Design Challenges for Flexible Hybrid Electronics

«Circuit design:
—Slow carrier mobility (~ 1-25 cm?/Vs) - limited operation speed
—Large feature size (L, ~ 20 um) => large parasitics (R/C)
—Mono-type devices = poor noise margin; high static power
—Inferior reliability (bias-stress or chemical) = poor operation lifetime
—Large process variations (>50%) - device mismatches

*Design Verification:
—Lack of design rule checking = prone to manufacturing yield loss
—Lack of layout versus schematics checking - prone to design errors
—Lack of layout parasitic extraction = inaccurate simulation results

—Lack of co-simulation environment of printed circuit and silicon chips = need to

perform physical verification and simulation separately; lower productivity
12



Carbon-nanotube Active and Passive Devices
TOp View: CNT-TFT CNT-Resistor

M1: Gate

M2: Drain/Source

TCNT

Cross View: CNT-TFT CNT Resistor Interconnects
Via-2 Via-2

Via-2 A ,054
SU-8 Encapsulation encapsulation

M2

Barrier layer
Flexible substrate

| Si or glass substrate



Ultra-thin Flexible CNT-TFTs on 1-um Thick Foll

Photo for Ultra-thin flexible CNT-TFTS Measured CNT-TFT I-V curves, channel 25um

: ; Vog=-05, ..., -2V

P-type device only

High mobility ~25cm?/Vs
Low operation voltage ~2V
ON/OFF ratio ~ 107




Ultra-Low Voltage (0.8V) Pseudo-CMOS CNT Circuits
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Pseudo-CMOQOS for Printable Circuits

VIN

VDD VDD Performance and Area Scaling for CNT Pseudo-CMOS Ring Oscillators
-~ 1.00E+07 1.00E+06
z
>
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Vour §
S 1008405 1.00E+04
VSS G N D VSS GN D 8 1.00E+04 1.00E+03
0 5 10 15 20 25 30
Pseudo-E PSGUdO-D CNT Transistor Channel Length (um)
Table 1: Comparison of State-of-the-art Flexible NFC and RFID Tags.
Design Example NFC [2] NFC [3] NFC [4] RFID [5] RFID [0]
Logic Style Pseudo-CMOS | Pseudo-CMOS | Pseudo-CMOS | Diode-load | Zero-VGS
Circuit Area (mm?) 50.55 10.9 15.8 8.05 70
# of Supply Voltages 3 3 3 2 2
Ring-Osc Stage Delay (ns) 2.4 63 570 349 909000
Data Rate (kb/s) 105.9 396.5 43.9 71.6 0.05
Power (mW) 7.5 64 63.5 93.2 0.02

Source: [2-4] K. Myny et al, ISSCC17’, 16, 15’; [5] B. Yang et al, ETRI Journal; [6] H. Ozaki et al, VLSI'11

(wirl) easy unoaD
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Flexible Carbon-Nanotube Resistor Array

Measured |-V curves for CNT Resistor Array

4 & 10* Resistor Measurements L=20 pm W=40zm

r2=20-um

_><10’4 Resistor Measurements L=10 um W=40.m

0.8

-4 -3 -2 -1 o] 1 2 3 4
Voltage (V)
107 Resistor Measurements L=50 ; W=40m 4 10" Resistor Measurements L=100 pm W=40,m

r2=50-pm ' r2=100-pm

Voltage (V)

. Oxide encapsulation
Polymer encapsulalion VIAZ
CNT M2

Barrier layer
Flexible substrate

Voltage (V) Voltage (V)




FHE-PDK Implementation



Database Structure for FHE-PDK

B Design Rule Definitions

D
- Device Definitions
Il Technology
Files
_— Parasitic Definitions

o SPICE/Verilog-A Model y | § Schematic Simulation
L 4

Layout Design Rule
Checking (DRC)

A g

Layout Versus
Schematic (LVS)
o

Parasitic Extraction
(PEX)
]

Post Layout Simulation
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CNT-TFT Modeling

10'45 T T T T T T E .
: Measuredl-VCurve | __\p-05] Observations:
105+ -1.  Mobility enhancement at low gate bias
] « Most acceptable theories are tail-distributed
: traps (TDTs) and variable range hop-ping
10 (VRH). Both indicate the mobility dependency
2 Linear Region Sub- : on gate voltage by Eq. (1) .
:w10'7* = {p‘,U(VG — Vin)?Y, N-type TFT )
po(Vin — Vi), P-type TFT
8. .
10 2 Mobility degeneration at high gate bias:
[ Vg(V) ] The degeneration of mobility at high Vsc can be
9 | I I 1 | |
107, A5 P o5 o 05 1 15 explained l:_>y the contact resistances R.=Rg +R at
0 source/drain terminals;
0 Mobility=25.7en?/Vs | « The contact resistances will cause a degeneration
(,E 20 -/ of the effective mobility as shown by Eq. (2)-(3).
i B - I Mobility Enhancement - wcC 1
1 / —~ oz b 4
“;- ! Isp ~ L+ FRo(Vn & VSG)}{(‘/M + Vsa) 2VSD}VSD
10~ : . 2)
I VoV Isp B 1 W
1 Lind —
0 . w ! . w ' Top = 1+ kRt Vag) *= L%+ 2 O



CNT-TFT Model Validation

TG Model Validation

1 Cep 1 C Transfer Curve V=0V, V_=-0.5V

DR T M Rs S 104
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Compact Model Schematic

0 Measure

k
Isp = m(f(v(;,vs)“f+2 — f(Ve, Vb)"*)(1 + A\Vsp)
Model

h_VG‘|‘V)]
SS

Current Model 10'8

<
B Vi =
fim(Va, V) = SS1n[1 + exp( 7

« Based on previous two observations, a

compact model for CNT-TFT is presented i 2
here. 1010 ‘ X107

« Good match between measurements and -2 -1 0 1
model further validate our analysis \V/ 2



CNT-TFT Model Validation and Parameter Extraction

4

x10 R 04 _ _ ,
» A wide range of VGS € [-2, O]V|* e | W el |
; ._ easurements _ G Measurements |

and VDS € [-4, 0]V, covering|:\ ~ Model I " S~ Model

sub-threshold, linear and| N\,
saturation, are investigated,

» Device parameters are extracted
out of 52 fabricated CNT-TFTs, " _ .
where a Gaussian distribution is| % 50w e %

Vv

1 1 GS DS
assumed for prOCGSS Varlatlons' TABLE III: Parameters extracted from 52 fabricated CNT-TFTs
All extracted parameters are Miodel Parameter Notation | Tz, o] Unit

. . Ch: 1L th L 25, -
summarized in Table Ill, where Chame | Wit W s e
Gate S/D Overlap Low [10, -] um
the mean Value IJ and Standard Gate Unit Capacitance Cox [200, -] nF/em?
. . . Threshold voltage Vin [0.5, 0.102] V
deviation o are prowded. Sub-threshold Swing SS [0.28, 0.0388] V/dec
Effective Mobility 0 [25.69, 0.19] sz/ Vs
Contact Resistance Reo [1531, 291] 2
Channel Length Modulation A [0.064, 0.0185] V1
Factor of Gate Dependent mobility ¥ [0.20, 0.116] ()




CNT-Resistor Modeling
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o I
X 200
Simplification: high frequency components, ©
such as parasitic capacitor and inductor are 0,;9
ignored here. & 150 |
R. RcpL :
Rioar = W W 100}

Decomposition:

* Ry IS composed of contact resistance R.30 |

and channel resistance Ry,
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and intersection determines the R_.s
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Physical Verification Implementation Procedures

Design Rules Based on
Fabrication Results

Metal
»>

CNT

»>

Design o . -
B ovcmne s o

rl
r2
r3

Res Width 4-200
Res Length 10-100
Metal enclosure 2 -100

»>>

DRC/LVS Rule

Files

Translate to Standard
Verification Rule
Format(SVRF)

Basic Components of Rule Files
Pseudo-Code

Layer Assignments

Global Layer Definitions
Include Statements

Rule Check Statements {

Local Layer Definitions

Layer Operations

Rule Check Comments

}

»>

Calibre by

Assura by

Mentg

Tools

DRC/LVS

Cadence

Implement in Mentor
(Interoperable with other tools)

Mentor Calibre
DRC Interface

technology files
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Layer Derivation and Design Rule Checking

Layer Derivation Operators: . :
NOT. AND & OR Layer Derivation of CNT-TFTS
a aNOTb aaANDDb aORD Temp = CNT AND Gate

Channel = Temp NOT Metall
SD = Metal2 AND CNT

Rule Checking Operators: Once the critical regions,

Enclosure, Spacing and Width
il such as channel, gate and
Spacing a Width source/drain, are derived,

Enclosureab

It is straightforward to
perform design checking.

25



Device Recognition and Layout versus Schematic

S

D

- s

Design/Schematic
View

= physical/Layout View G \

) < ¢

etlist

Device Recognition
(Layout & Netlist

Mapping)

Gate & G
SD <& S/D

Device Mapping Schematic
and Extraction Compilation

<« |5

- I))) LVS <«< Source
u .
N y Checking Netllst

. With defined recognition'

rules, netlists are
extracted from both th
schematic and the
layout.

. Then, both netlists are

converted into graphs
and graph isomorphism
Is used to check their
equivalence. 26




Parasitic Definition and Layout Parasitic Extraction

Series Resistor Nearbody
T NNy Metal2 Via Resistor
Intrinsic Intrinsic Frmge| Plate % Fringe
. plate "
fringe L]
Intrinsic il «
fringe Intrinsic
plate \ Substrate
Parasitic Definition 1. Similar to device recognition,

Parasitic capacitor : intrinsic or coupling
C = Cpate *Area()+ C ginqe * Perimeter()

Parasitic resistor : conducting layers or vias

parasitic are extracted from
the layout.

Post-simulation can be
performed for more accurate
results

R = Rgpoe * Length()/Width()

27



Parameterized Cell (P-Cell) for CNT Resistors

T curent [ insance B DF Par | & Tools Filter n CDF Parameler of view  (Us8 Tools Filter n
ystEm o user o Cang 0w N Lengt O N
g Reset Instanc Labaks Displas
Froperty value Display Widtt 4u M Widl lu H
Litarary Mama FHE-?DF~Lib '
Cell Name r i B Uhms
Wiew Mame symhol S - | Mt 1 I
Inslance Mame 12 valuie ‘ Mulliplier
Sl M o R o T Channel Length=10um Channel Length=20um
L - | -
Channel Width - S - | DF Paramets: i Use Tools Filler n CDF Parameter of view Use Tools Filter n
CDF Parameler of view  |U88 'l'..tll. Fiter [ Chan nel Length Lengtr Elu N Lengtr 100w M
Length 10u K — o . . i e
b — T B Wid 4u M it lu M
“antart Widh u M B Ol = I
6E Ohme i ‘
Multipler i u Mullipliar Mulliplier
Contact Width = -
— | sheet Resistance Channel Length=50um Channel Length=100um

Note: All parameters not in the
geometry space (ChL [10,100] um,
Chw[4,200] um, CW[2,10] um) will

cause an warning/error

Sheet Resistance will automatically change once
changing the parameters based on the measurements
and linear interpolation in the geometry space (ChL
[10,100] um, ChW[4,200] um, CW[2,10] um)
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Conclusion and Future Outlook

—FHE is emerging for sensing and computing virtually anywhere

—US FHE-MII (NextFlex) established in 2015 to promote this field by collaboration
(government/industry/academia)

—We aim to bring machine intelligence to billions of intelligent 10T nodes
—Solutions to solve circuit design and verification challenges

—Compatible with ink-jet printing and roll-to-roll imprinting for mass production
—Pseudo-CMOS circuits demonstrated for RFID/NFC/Healthcare/Energy
—LSPC (IMEC ISSCC’17) using Pseudo-CMQOS and > 2,000 TFTs becomes reality

—Process design kit for flexible hybrid electronics (FHE-PDK)
—Spice models for printed active and passive components
—Design rules and checking (DRC/LVS/LPE) for printed TFT circuits
—Integrated environment for printed circuit and silicon chip co-development

29
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