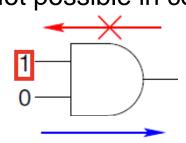
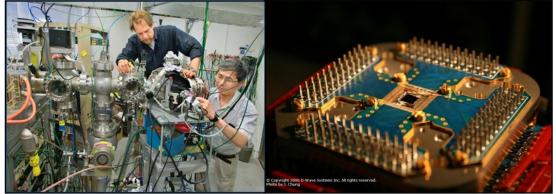
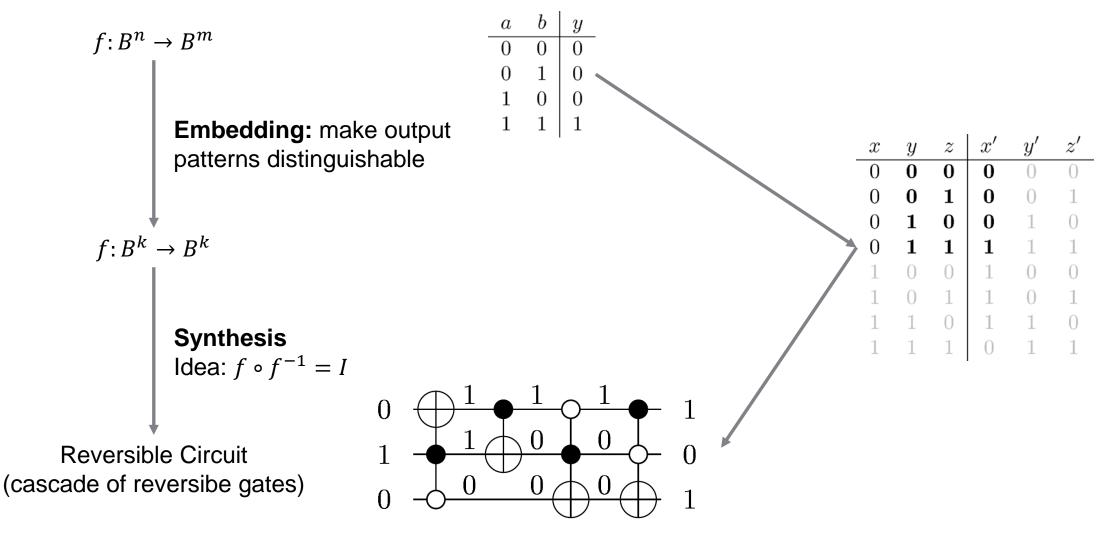
EXPLOITING CODING TECHNIQUES FOR LOGIC SYNTHESIS OF REVERSIBLE CIRCUITS



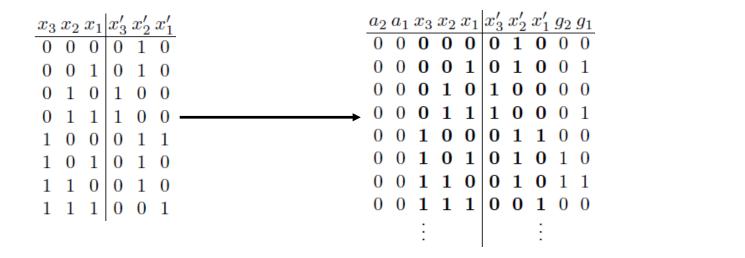
Alwin Zulehner, Robert Wille Johannes Kepler University Linz, Austria


alwin.zulehner@jku.at robert.wille@jku.at

MOTIVATION: REVERSIBLE COMPUTATION


Perform computations from inputs to outputs and vice versa
 Not possible in conventional logic

Required for Boolean components of quantum circuits



FUNCTIONAL SYNTHESIS FLOW

BOTTLENECK: THE EMBEDDING PROCESS

- Make output pattern distinguishable
 - \Box Add $\log_2 \mu(p_1) = 2$ garbage outputs

Drawbacks:

- \Box More variables \rightarrow more complex synthesis
- $\hfill\square$ No degree of freedom in synthesis

 $p_i \mid \mu(p_i)$

1

1 010

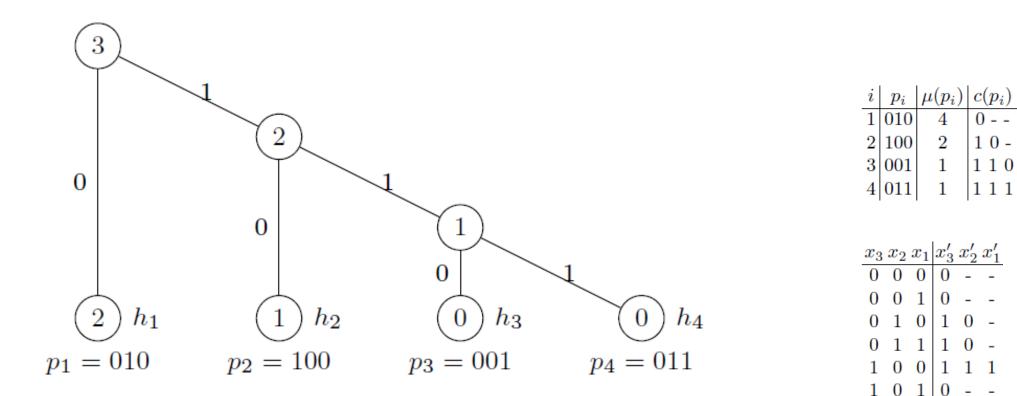
4 011

2 100 2

3 001 1

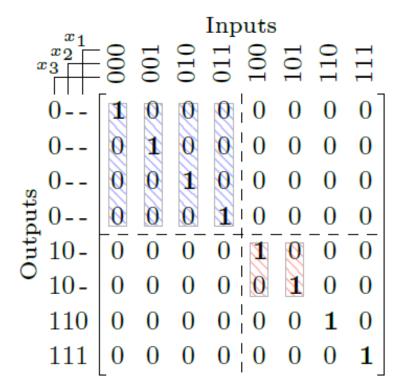
KEY OBSERVATION AND IDEA

■ Not all patterns require all $\log_2 \mu(p_1) = 2$ garbage outputs

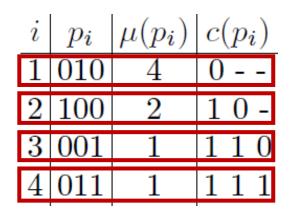

- Use variable-length encoding
 Frequent patterns: short code and many garbage outputs
 Infrequent patterns: longer code but fewer garbage outptus
- Synthesis with fewer variables and degree of freedom

■ Note: A decoder is required

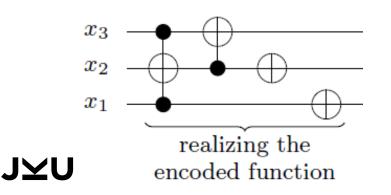
i	p_i	$\mu(p_i)$	$c(p_i)$
	010		0
2	100	2	10-
3	001	1	$1 \ 1 \ 0$
4	011	1	$1 \ 1 \ 1$


x_3	x_2	x_1	x'_3	x'_2	x'_1
0	0	0	0	-	-
0	0	1	0	-	-
0	1	0	1	0	-
0	1	1	1	0	-
1	0	0	1	1	1
1	0	1	0	-	-
1	1	0	0	-	-
1	1	1	1	1	0

VARIABLE-LENGTH ENCODING: HUFFMAN CODE

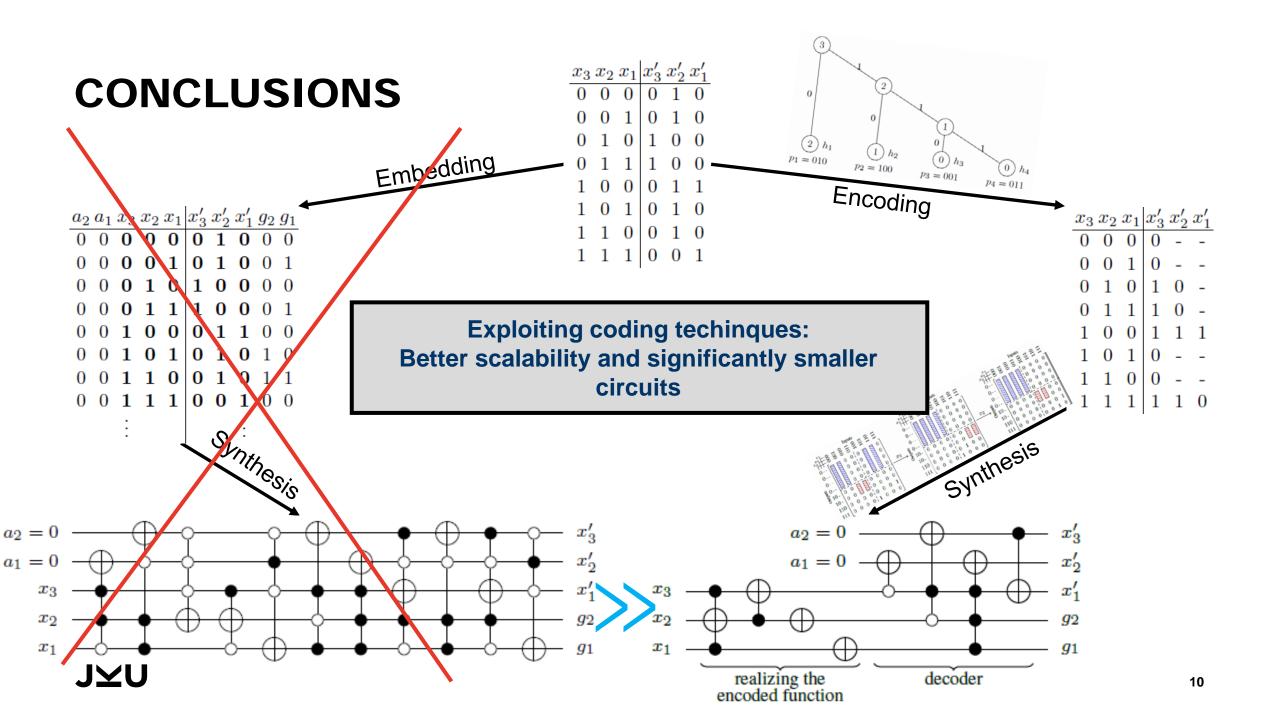

J⊻U	J
-----	---

SYNTHESIS OF THE ENCODED FUNCTION



- Use a permutation matrix
 Model degree of freedom
- Transform to identity variable-wise
 Swap columns
- Exploit degree of freedom x'1
 Fewer control lines required

DECODE THE FUNCTION


- Circuit has $\log_2 \mu(p_1) = 2$ garbage outputs
- Easy for majority of the decoder
- Use synthesis for remaining outputs

COMPARISON TO THE STATE OF THE ART

- Comparison to the state of the art
 Symbolic TBS
 - □ QMDD-based synthesis
- Coded function is more compact
- Much more scalable
 Magnitudes fewer runtime
- Magnitudes fewer cost
 66.3% and 92.6% on average

				TBS		QMDD		Proposed		
Name	n	m	l	t	T-depth	t	T-depth	l_c	t	T-depth
9symml	9	1	10	2.02	99381	0.10	196764	10	0.07	7320
dk27	9	9	15	3.86	123276	0.89	2409495	10	0.17	48405
x2	10	7	16	25.10	391404	1.98	4516011	11	0.13	21075
alu3	10	8	14	19.75	337281	2.08	3368610	11	2.51	533685
dk17	10	11	19	56.66	492033	17.52	37365105	11	0.94	258510
apla	10	12	22	199.15	604542	41.97	77151615	11	1.00	87 336
co14	14	1	15	TO	_	0.04	26544	15	0.01	3360
alu4	14	8	19	TO	_	331.85	324374364	15	70.39	11027733
cu	14	11	25	TO	_	ТО	_	15	0.63	76311
table3	14	14	28	TO	_	ТО	_	15	6.93	463260
s1488	14	25	38	TO	_	ТО	_	15	197.74	9553668
in0	15	11	25	ТО	_	ТО	_	16	81.27	11725497
m cm163a	16	13	25	ТО	_	ТО	_	17	708.99	80405748
pdc	16	40	55	TO	_	ТО	_	17	3004.29	10401426
spla	16	46	61	ТО	_	ТО	_	17	2488.81	13852266
table5	17	15	32	ТО	_	ТО	_	18	77.55	10065483
mux	21	1	22	то	_	ТО	_	22	0.48	7056
cordic	23	2	25	то	_	ТО	_	24	1028.91	17630250
e64	65	65	129	ТО	_	ТО	_	65	4.84	95202

