CANNA: Neural Network Acceleration using Configurable Approximation on GPGPU

Mohsen Imani, Max Masich, **Daniel Peroni**, Pushen Wang, Tajana S. Rosing University of California San Diego

see

Motivation

- Billions of interconnected devices (large scale data problem)
- Amount of data generation in 2015 was 8 zettabytes and is exponentially growing
- Impractical to send all data to cloud
- Processing data (at least partially) locally is scalable, allows real-time response, and ensures privacy

Machine Learning is Changing Our Life

Neural Networks

• Neuron:

- A processing unit which takes one or more inputs and produces an output
- Each input has an associated weight which modifies its strength
- Neuron simply adds together all the inputs and calculates an output to be passed on
- Training:

seelab.ucsd.edu

• Based on the error in training phase, update the weights using gradient descent in back propagation

deep-learning.pdf

Cost of Floating Point Multiplication

- Floating point multiplication consumes majority of computational power in NN
- A 32-bit FPU multiply is 4x more costly than an FPU add [Horowitz 2014]

		Relative Energy Cost
Operation:	Energy (pJ)	
8b Add	0.03	
16b Add	0.05	
32b Add	0.1	
16b FP Add	0.4	
32b FP Add	0.9	
8b Mult	0.2	
32b Mult	3.1	
16b FP Mult	1.1	
32b FP Mult	3.7	
		1 10 100 1000

Related Work

- Approximate NN parameters:
 - Implementing fixed-point quantized numbers improves performance [Lin 2015]
 - Binarized weights can be used to avoid multiplication [Lin 2015]
 - More accurate results require higher precision and these approaches have difficulties with additive quantization noise
- Approximate Multipliers:
 - Reduced bit multiplication [Hashemi 2015]
 - Approximate multiplier designed from approximate adders
 [Liu 2014]
 - Configurable floating point multiplier [Imani 2017]

IEEE 754 Floating Point Values

- Floating point values has 3 components:
 - Sign bit Determines positive or negative value
 - Exponent -2^x where **x** ranges from -127 to 128
 - Fraction (Mantissa) Ranges from 1 to 2
- Multiply all three together to get decimal value

Configurable Floating Point Unit (CFPU) See

- Modify FPU to approximate multiplication
- Copy mantissa from one input and discard the other
- Tuning allows FPU to run in either exact or approximate mode

• Only 2.7% energy overhead compared to unmodified FPU System Energy Efficiency Lab 8 seelab.ucsd.edu

Configurable Floating Point Unit (CFPU)

- Adaptive operand selection to detect which mantissa to discard
- Mantissa closest to 0x000... or 0x111... will result in lowest error
- If predicted error is too large based on tuning bits, run exact mantissa multiply

$$Error = \left| \sum_{i=N}^{n-1} 2^{-((n-i)A_{n-i-1})} - 0.5 \right|$$

Example Approximate Multiply

- Copy mantissa from B
- Check n-tuning bits
 - 3-bits match, error must be less than 6.25%
- Result: -272 (5.9% error)

CANNA - Configurable Approximation for Neural Network Acceleration

• Training phase: Use less accurate computation and gradually increase the accuracy as the solution converges

 Inference phase: Use approximate hardware for calculations, but adjust accuracy based on sensitivity of layers

System Energy Efficiency Lab seelab.ucsd.edu

11

Gradual Training Approximation (GTA) See

- Initialize weights to random values
- Start training with high levels of approximation
- Reduce the level of approximation as a function of NN error until the desired accuracy is reached

Gradual Training Approximation (GTA) See

- Use combination of current iteration and desired accuracy to generate threshold (THR) for current iteration
- Apply THR to CFPU to adjust accuracy

Layer Based Inference Approximation Se

- Each layer has a different impact on output error
- Approximation is reduced for layers with higher sensitivity and vice versa
- Tested data shows first and last layers are the most sensitive

	Layer 1	Layer 2	Layer 3	Layer 4
MNIST	1	0.52	0.34	0.89
ISOLET	1	0.57	0.65	0.83
HYPER	0.92	0.72	0.59	1
HAR	1	0.48	0.41	0.92

Relative Sensitivity of Each Layer

Layer Based Inference Approximation

- Run validation dataset on NN with no approximation to generate baseline accuracy
- Run validation dataset while adjusting approximation in each layer
- Determine the sensitivity of each layer

Layer Based Inference Approximation

- Based on sensitivity values select level of approximation for each layer
- Goal: minimize error while ensuring maximum approximation for each layer

Experimental Setup

- Multi2sim for architectural simulation [
 - AMD Southern Island Architecture
 - Cycle accurate simulator
- Test Applications
 - MNIST Handwritten image recognition
 - ISOLET Voice recognition
 - HYPER Hyperspectral imaging
 - HAR Human activity recognition
- Power/Performance Measurement
 - McPAT for power estimation
- RCA Circuit Level
 - Transistor-level HSPICE simulation for power and delay in 45nm

System Energy Efficiency Lab seelab.ucsd.edu

erimental Setup

Gradual Training Approximation - Speedup

- Baseline is neural network running on exact hardware
- GTA achieves 3.8x average speedup with 1% additive error

Application	Network Topology	e _{test} (%)
	(l^0, l^1, l^2, l^3)	
MNIST	784, 500, 500, 10	2.4
ISOLET	617, 500, 500, 26	4.4
HYPER	200, 500, 500, 9	6.6
HAR	561, 500, 500, 12	3.4

seelab.ucsd.edu

Gradual Training Approximation - Energy

- Results are compared to an unmodified AMD GPU
 - Δe is the difference between the output error of the exact NN and the approximately trained NN
- GTA achieves 4.8x average energy improvement at 1% additive error

Layer based approximation - Sensitivity

- Outermost layers are the most sensitive to approximation
- Inner layers can allow 1.5-3x more approximation error
- Need to round sensitivity to due to approx granularity

Relative Sensitivity of Each Layer

	Layer 1	Layer 2	Layer 3	Layer 4
MNIST	1	0.52	0.34	0.89
ISOLET	1	0.57	0.65	0.83
HYPER	0.92	0.72	0.59	1
HAR	1	0.48	0.41	0.92

20

Layer based approximation - Performance

 Layer based inference achieves 3.6x energy savings and 2.3x speedup for 1% additive error

 $^{\ast}\Delta e$ is the difference between the output error of the exact NN and the approximately trained NN

Conclusion

- Neural networks can benefit greatly from approximation
- A configurable approximate multiplier allows the level of approximation to be adjusted
- Gradual Training Approximation:
 - During training gradually increasing accuracy results in better energy and performance than using a uniform approach
- Layer-based Inference Approximation:
 - During inference approximation of individual layers can be adjusted to optimize performance
- Training 4.8x energy savings and 3.8x speedup*
- Inference 3.6x energy savings and 2.3x speedup*

*With 1% added error

Questions

