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Motivation see

* Billions of interconnected devices (large scale data problem)

 Amount of data generation in 2015 was 8 zettabytes and is
exponentially growing

* Impractical to send all data to cloud

* Processing data (at least partially) locally is scalable, allows real-time
response, and ensures privacy

EVERY DAY WE CREATE
909 OF THE
WORLD'S DATA
TODAY HAS BEEN
CREATED IN THE
LAST 2 YEARS
BYTES OF DATA ALONE.
This would fill 2
the height of which stacked, would measure
the height of on top of one another.
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Machine Learning is Changing Our Life See
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Neural Networks see

e Neuron:
e A processing unit which takes one or more inputs and produces an output
e Each input has an associated weight which modifies its strength

e Neuron simply adds together all the inputs and calculates an output to be
passed on

e Training:

e Based on the error in training phase, update the weights using gradient
descent in back propagation

Train
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Cost of Floating Point Multiplication see

e Floating point multiplication consumes majority of
computational power in NN

e A 32-bit FPU multiply is 4x more costly than an FPU

add [Horowitz 2014]

45nm CMQOS Technology
Relative Energy Cost

Inputs Weights Operation: Energy (pJ)
8b Add 0.03

16b Add 0.05
32b Add 0.1
16b FP Add 0.4
32b FP Add 0.9
8b Mult 0.2
32b Mult 3.1
16b FP Mult 1.1
32b FP Mult 3.7

Bias

1 10 100 1000
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Related Work see

Approximate NN parameters:

Implementing fixed-point quantized numbers improves
performance [Lin 2015]

Binarized weights can be used to avoid multiplication pin 2015

More accurate results require higher precision and these
approaches have difficulties with additive quantization
noise

Approximate Multipliers:
Reduced bit multiplication ashemi 2015

Approximate multiplier designed from approximate adders
[Liu 2014]

Configurable floating point multiplier [Imani 2017]

System Energy Efficiency Lab
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IEEE 754 Floating Point Values SEE

sign exponent8-bit) fraction (23-bit)
| | |

[J[le1111[J[JiﬂlIGGGGGGGDGGGGGGGGGGDDD

L b

23=0.125 X 1.25 = 0.15625

e Floating point values has 3 components:
e Sign bit — Determines positive or negative value
e EXponent — 2Xwhere x ranges from -127 to 128
e Fraction (Mantissa) — Ranges from 1 to 2

e Multiply all three together to get decimal value

System Energy Efficiency Lab 7
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Configurable Floating Point Unit (CFPU) S€€

Signl Exponent | Mantissa
A: An | Ana| *** | Aia | A IAi+1 see | Ay [Ains1]| *0 | Aq
| [mo======m===mmm=-
) 4 [ _|_ I N Tuning bits
[ I
Py
Bn Bn.1 Bi1 Bi Bi+1 B :

Q |
C: Cn | Cna| *** | Cit | Bi | Bin »ae B
e Modify FPU to approximate multiplication

e Copy mantissa from one input and discard the other
e Tuning allows FPU to run in either exact or approximate

mode
e Only 2.7% energy overhead compared to unmodified FPU
System Energy Efficiency Lab 3
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Configurable Floating Point Unit (CFPU) SCC
e Adaptive operand A—y >
selection to detect B . = R a
which mantissa to I '
discard ¢ = ‘
e Mantissa closest to Mapive OP T
OXOOO .. Or OXlll " ol S
- . P Vdd |
will result in lowest ii Tuning N 3 o i
error J i AR T ) o |
. . [ | |
e If predicted error is ii f I ST I qﬂ* |
too large based on Ak S
| ’ |
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mantissa multiply n—1 |
Error = 2 2~ ((n=dAni1) _ 5
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Example Approximate Multiply

Sign Exponent

Mantissa

A: 34| 1

10000100

00010000...

_|_

X

B: 85 |0

10000010

00010000..

C:-289| 1

10000111

11111110...

e Copy mantissa from B

Precise Functionality

e Check n-tuning bits
e 3-bits match, error must be less than 6.25%

e Result: -272 (5.9% error)

System Energy Efficiency Lab
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CANNA - Configurable Approximation for ©,
Neural Network Acceleration See

e Training phase: Use less accurate
computation and gradually increase the
accuracy as the solution converges

e Inference phase: Use approximate
hardware for calculations, but adjust
accuracy based on sensitivity of layers

System Energy Efficiency Lab
seelab.ucsd.edu
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Gradual Training Approximation (GTA) See€

e Initialize weights to random values
e Start training with high levels of approximation

e Reduce the level of approximation as a function of NN
error until the desired accuracy is reached
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Gradual Training Approximation (GTA) See€

e Use combination of current iteration and
desired accuracy to generate threshold
(THR) for current iteration

e Apply THR to CFPU to adjust accuracy

52 T I I
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Layer Based Inference Approximation See€

e Each layer has a different impact on output error

e Approximation is reduced for layers with higher
sensitivity and vice versa

e Tested data shows first and last layers are the
most sensitive

Relative Sensitivity of Each Layer

_

MNIST 0.52 0.34 0.89
ISOLET 1 0.57 0.65 0.83
HYPER 0.92 0.72 0.59 1

HAR 1 0.48 0.41 0.92

System Energy Efficiency Lab
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® Layer Based Inference o

Approximation

See

e Run validation dataset on NN with no approximation to
generate baseline accuracy

e Run validation dataset while adjusting approximation in

each layer

e Determine the sensitivity of each layer

Layer Sensitivity Analysis

Hardware Configurator 1 Sensitivity Analysis
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” Layer Based Inference o
Approximation see

e Based on sensitivity values select level of approximation
for each layer

e Goal: minimize error while ensuring maximum
approximation for each layer

Layer Sensitivity Analysis Configurable Test Operation

I
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Experimental Setup see

e Multi2sim for architectural simulation gl —
e AMD Southern Island Architecture Compute Units ”

e Cycle accurate simulator Shading Units B
Memory 3072 MB

e Test Applications
e MNIST — Handwritten image recognition
e ISOLET — Voice recognition
e HYPER — Hyperspectral imaging
e HAR — Human activity recognition
e Power/Performance Measurement
e MCcPAT for power estimation
e RCA Circuit Level
e Transistor-level HSPICE simulation for power and delay

INn 45nm

System Energy Efficiency Lab
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Gradual Training Approximation - Speedup S5CC

e Baseline is neural network running on exact hardware
e GTA achieves 3.8x average speedup with 1% additive error

Application | Network Topology | eiesi(%)
112 P)
MNIST 784, 500, 500, 10 24
ISOLET 617, 500, 500, 26 4.4
HYPER 200, 500, 500, 9 6.6
HAR 561, 500, 500, 12 3.4
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Gradual Training Approximation - Energy SE€

e Results are compared to an unmodified AMD GPU

e Ae is the difference between the output error of the exact NN and the
approximately trained NN

e GTA achieves 4.8x average energy improvement at 1% additive error
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Layer based approximation - Sensitivity

©,
see

e Outermost layers are the most sensitive to

approximation

e Inner layers can allow 1.5-3x more approximation error
e Need to round sensitivity to due to approx granularity

Relative Sensitivity of Each Layer

-

MNIST 0.52
ISOLET 1 0.57
HYPER 0.92 0.72
HAR 1 0.48

System Energy Efficiency Lab
seelab.ucsd.edu
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Layer based approximation - Performance SEC

e Layer based inference achieves 3.6x energy savings
and 2.3x speedup for 1% additive error

HYPER : MNIST
6 1 t T T
o o
_g | (W Energy Improvement | _g 6l I Energy Improvement
3 5 -Speedup 8 -SPEEdUp
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* Ae is the difference between the output error of the exact NN and the approximately
trained NN
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Conclusion see

e Neural networks can benefit greatly from approximation

e A configurable approximate multiplier allows the level of
approximation to be adjusted
e Gradual Training Approximation:

e During training gradually increasing accuracy results in better
energy and performance than using a uniform approach

e Layer-based Inference Approximation:

e During inference approximation of individual layers can be
adjusted to optimize performance

e Training — 4.8x energy savings and 3.8x speedup*
e Inference — 3.6x energy savings and 2.3x speedup*

System Energy Efficiency Lab *With 1% added error
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Questions
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