CryptoBlaze

A Partially Homomorphic Processor with Multiple Instructions and Non-Deterministic Encryption Support

Florencia Irena Daniel Murphy Sri Parameswaran The University of New South Wales, Australia

What is the motivation?

Cloud storage and confidentiality

What is the purpose of CryptoBlaze?

To enable encrypted data processing without exposing the actual data (no decryption key needed)

How to process ciphertext without decryption?

Homomorphic Encryption (HE)

"Encryption scheme that allows computations on ciphertext, while preserving the correct plaintext result"

- > \$ = the equivalent of + based on the HE scheme used
- \succ HE₁ is additively homomorphic
- CryptoBlaze: homomorphic processor

CryptoBlaze: Threat Model

- Cloud service provider that:
 - Tries to pry inside the data memory
 - Does not tamper with data/program
- > Denial of Service attacks are never carried out

Related Works and CryptoBlaze

	HEROIC ^[1]	FURISC ^[2]	[3]	CryptoBlaze
Deterministic	Det	Non-Det	Det	Non-Det
Single/Multi inst.	Single	Single	Multi	Multi
Encrypted prog	Encrypted	Encrypted	Unencrypted	Unencrypted
Hardware/Sim	Hardware	Simulation	Simulation	Hardware
Fully/Partial HE	Partial	Fully	Partial	Partial (+)

 N. G. Tsoutsos and M. Maniatakos. Heroic: Homomorphically encrypted one instruction computer. In Proceedings of the Conference on Design, Automation & Test in Europe, DATE '14, pages 246:1–246:6, 3001 Leuven, Belgium, Belgium, 2014. European Design and Automation Association.
A. Chatterjee and I. Sengupta. FURISC: FHE encrypted URISC design. IACR Cryptology ePrint Archive, 2015:699, 2015.

[3] P. T. Breuer, J. P. Bowen, E. Palomar, and Z. Liu. A practical encrypted microprocessor. In Proceedings of the 13th International Joint Conference on e-Business and Telecommunications (ICETE 2016) - Volume 4: SECRYPT, Lisbon, Portugal, July 26-28, 2016., pages 239–250, 2016.

CryptoBlaze HE Scheme

Design

CryptoBlaze ISA

- Extends a variant of MicroBlaze ISA
- > 8 additional instructions for encrypted data processings

CryptoBlaze: How big is an encrypted data?

n = security parameter

- Recall: for n = b bits, ciphertext = 2b bits
- Supporting subtraction? Pairwise storing (negation pair)

$$\begin{array}{c} \mathbf{c}_{4b-1}\mathbf{c}_{4b-2}\cdots\mathbf{c}_{2b}\mathbf{c}_{2b-1}\mathbf{c}_{2b-2}\cdots\mathbf{c}_{0} \\ \downarrow \\ \mathbf{Enc(A)} \\ 2b \text{ bits } \\ \end{array}$$

Encrypted Data Size = 4b bits

CryptoBlaze: eRegister and keyRegister

Recall: Paillier addition ('+') c1c2 mod n²

keyRegister (KR)

1 special register Store n^2 (for '+') **N2MOV**: ER \rightarrow KR

eRegister (ER)

32 x 4b-bit register Ciphertext processing **EMOV**: Copy between ERs

CryptoBlaze: Memory Space and Transfer

- Shared between normal and encrypted data
- > Byte-addressed
- ELD (load) and EST (store) to/from ER
- Program: unencrypted (multi instructions)
- ➤ Communicates via 32-bit AXI bus
 - For n = b bits, ELD/EST = $\frac{4b}{cycles}$

CryptoBlaze: EADD

> Recall Paillier addition '+' = $c1c2 \mod n^2$, for n = b bits:

- **2b-bits** c1 x **2b-bits** c2 multiplication, followed by
- 4b-bits c1c2 / 2b-bits n^2 division → remainder taken
- > Negation pair: higher & lower bits separately at the same time

eALU: Multiplication and Division Block

- Multiplication: addition and shift
- Division: subtraction and shift
- Each multicycle, depends on:
 - **b** (the bits size of n)
 - k (the size of the ALU unit: addition/subtraction/comparison)
- Stall signal to processor

eALU: Multiplication and Division Block

CryptoBlaze: **ESUB**

- > Similar to *EADD*: uses homomorphic addition ('+') = $c1c2 \mod n^2$
- Negation pair
 - '+' higher bits of c1 with lower bits of c2
 - \circ '+' lower bits of c1 with higher bits of c2

CryptoBlaze: Branching

- Homomorphic addition '+' only: cannot determine if ERa < 0</p>
- Decryption is needed, but no private key
- > Non-deterministic : Sign LUT is not viable
- ➢ Solution: client-server communication → EBRNEG, EBRZPOS

Experimental Setup

Experimental Setup

- Input parameters:
 - DATA_WIDTH (4b) → b = 32, 64, 128, 256, 512, 1024
 - ALU_WIDTH (k) → k = 32, 64, 128, 256, 512, 1024, 2048, 4096
 - \circ **CLK_FREQ** \rightarrow 5MHz to 125MHz with 5MHz increment

Experimental Setup

- **Benchmark programs**: Fibonacci, Factorial, Bubble Sort
 - Same benchmark as HEROIC and FURISC for comparison
 - Result checked for correctness
- Client modelling (for branching):
 - A variant of MicroBlaze
 - 32-bit AXI Bus connection to CryptoBlaze
 - Actually requires decryption
 - Pre-computed sign array (O(1) operation)) → simplify and minimize dependency

Result

Result: Number of Executed Instructions

Benchmark	HEROIC	CryptoBlaze
Fibonacci	1617294	898
Factorial	1011994	5656
Bubblesort	1882234	112882

Result: Synthesis - Minimum Latency Config

	Slice LUTs%	#Cycles	Max Freq	Latency
Increase data size (4b)	increase	increase	no change*	increase
Increase ALU Size (k)	no change	decrease	decrease	decrease**

eRegisters dominate	Critical path = ALU (+/-)
Recall: '+' takes 24b ² /k cycles	Latency = #Cycles / MaxFreq

- *) Exception: for k <= 256, critical path = register R/W
- **) Exception: for k >= 1024, max freq too low \rightarrow high latency

Result: Number of Cycles - Bubble Sort

b(bits) HEROIC		FURISC	CryptoBlaze (min. <i>latency</i> config)	
			# cycles	k(bits)
32	5.77 * 10 ⁷	-	3.10 * 10 ⁶	128
64	7.14 * 10 ⁷	_	5.49 * 10 ⁶	256
128	9.89 * 10 ⁷	-	1.04 * 10 ⁷	512
256	1.54 * 10 ⁸	3.51 * 10 ¹¹	5.03 * 10 ⁷	256
512	2.64 * 10 ⁸	-	9.98 * 10 ⁷	512
1024	4.84 * 10 ⁸	-	1.19 * 10 ⁹	128

Result: Latency - Bubble Sort

Discussion: Performance

- ➤ Generally faster than HEROIC and FURISC with assumptions:
 - Fast decryption in client (modelled to be O(1))
 - High-speed communication channel between client and server
- Depends on the decryption and client-server communication speed

Discussion: Security

Robust against known-ciphertext attacks (e.g. frequency analysis)

Robust against chosen-plaintext attacks

Abused client-server communication → possible solution: server authorization

Unencrypted program memory exposes executed algorithm

Conclusion and Future Work

Non-deterministic Partially Homomorphic Processor

Supports multiple instructions (8 for ciphertext)

CryptoBlaze

FPGA Implementation

Faster given fast decryption and communication channel Future researches:

- Securing client-server communication
- Optimizing implementation
- Exploring design space