

A Low-overhead PUF based on Parallel Scan Design

Presenter: Wenxuan Wang

Advisor: Aijiao Cui

Thursday, February 15, 2018

Outline

2/28

- Literature Review of PUF
- The Design of PUF Based on Parallel Scan
- Conclusions and Future Work

Outline

Introduction of PUF

- Literature Review of PUF
- The Design of PUF Based on Parallel Scan
- **Conclusions and Future Work**

5/28

Harbin Institute of Technology (Shenzhen)

-Security Issues

How to generate and store the key in a more secure way?

6/28

-Physical Unclonable Function

PUFs transform the intrinsic random variations in device parameters (V_{th} , L_{eff}) to variations in circuit-level parameters.

Application:

> IP Protection > Key Generation > System Certification

[1] Pappu R, Recht B, Taylor J, et al. Physical One-Way Functions[J]. Science, 2002, 297(5589): 2026-2030.

-Physical Unclonable Function

Weakness:

Easy to be found
High area overhead

Outline

- Literature Review of PUF
- The Design of PUF Based on Parallel Scan
- Conclusions and Future Work

- The Classification of PUF

• PUF:

9/28

1. Memory-based PUF
> SRAM PUF
> Butterfly PUF
2. Delay-based PUF
> Arbiter PUF
> RO-PUF

-Memory-based PUF

[2] Hofer M, Boehm C. An Alternative to Error Correction for SRAM-Like PUFs[C]// ACM CHES - Workshop on Cryptographic Hardware and Embedded Systems, New York: ACM, 2010: 335-350.

[3] Kumar, Sandeep S., et al. "Extended abstract: The butterfly PUF protecting IP on every FPGA." *IEEE International Workshop on Hardware-Oriented Security and Trust* IEEE Computer Society, 2008:67-70.

-Delay-based PUF

Arbiter PUF

[4] Lee J W, Lim D, Gassend B, et al. A Technique to Build A Secret Key in Integrated Circuits for Identification and Authentication Applications[C]// VLSI Circuits, 2004. Digest of Technical Papers. 2004 Symposium on, Piscataway: IEEE, 2004: 176-179.

-Delay-based PUF

[5] Maiti A, Schaumont P. Improving The Quality of A Physical Unclonable Function Using Configurable Ring Oscillators[C]// International Conference on Field Programmable Logic and Applications, Piscataway: IEEE, 2009: 703-707. Literature Review of PUF

-Analysis of ScanPUF

[6] Zheng Y, Zhang F, Bhunia S. DScanPUF: A Delay-Based Physical Unclonable Function Built Into Scan Chain[J]. IEEE Transactions on Very Large Scale Integration Systems, 2016, 24(3): 1059-1070.

Outline

- Introduction of PUF
 - Literature Review of PUF
- The Design of PUF Based on Parallel Scan
 - Conclusions and Future Work

- The proposed PUF structure

-NOR-type SR-latch Arbiter

-NAND-type SR-latch Arbiter

and DUE structure

- The proposed PUF structure

- The proposed PUF structure

-1 PUF bit design in FPGA

-1 PUF bit design in FPGA

PUF Based on Parallel Scan

Harbin Institute of Technology (Shenzhen)

- Uniqueness Analysis

Uniqueness:

inter-die Hanming Distance(HD) of \mathbf{R}_1 and \mathbf{R}_2 Chip1:R₁=PUF(C₁) Chip2: R_2 =PUF(C₁) Ideal value:50%

$$HD_{avg} = \frac{2}{m \cdot (m-1)} \sum_{i=1}^{m-1} \sum_{j=i+1}^{m} HD_{i,j} \times 100\%$$

HD_{avg} =49.86% (forty responses from

four FPGAs)

-Reliability for Temperature Variation

Reliability:

intra-die Hanming Distance(HD) of R_1 and R_2 Chip1: R_1 =PUF(C_1) Chip1: R_2 =PUF(C_1) Ideal value:100%

$$HD_{intra} = \frac{2}{m} \sum_{j=1}^{m} \frac{HD(R_{i}, R'_{i,j})}{n} \times 100\%$$

$$Reliability = 100\% - HD_{intra}$$

Reliability with temperature varying: 1. Worst: HD_{avg} >96% (Temperature from 25°C to75°C) 2. HD_{avg}> 99% (Temperature is 25°C, Voltage±0.002v)

PUF Based on Parallel Scan 🎧 塔爾濱ノ紫

Harbin Institute of Technology (Shenzhen)

-Reliability for Voltage Variation

Reliability with voltage varying:

From 0.90v to 1.10v, step=0.05vMonte-Calo analysis (PTM-65nm): V_{thn} =agauss(0.423v,0.02,4) V_{thp} =agauss(-0.365,0.02,4)

PUF Based on Parallel Scan 分子 哈爾濱ノ紫大学

Harbin Institute of Technology (Shenzhen)

-Randomness Analysis (NIST)

	30°C	40°C	50°C	6o°C	70°C
ApproximateEntropy	100%	100%	100%	100%	100%
BlockFrequency	97%	97%	98%	97%	97%
CumulativeSums	98%	98%	100%	98%	98%
FFT	100%	100%	99%	100%	98%
Frequency	97%	97%	98%	97%	97%
LongestRun	99%	99%	99%	98%	100%
Runs	100%	99%	100%	100%	98%
Serial	100%	100%	100%	99%	100%

Outline

- Introduction of PUF
- Literature Review of PUF
- The Design of PUF Based on Parallel Scan
- Conclusions and Future Work

Conclusion and Future Work

- A Low-overhead PUF based on Parallel Scan
 Design
- ✓ -Ultra-low overhead
- \checkmark -PUF with good uniqueness and robustness
- \checkmark -Well integrated with original design

Future work

- ✓ -The application of PUF
- ✓ -Improve PUF Reliability

Thank you!

SR latch – metastable state

