
1

Abraham Addisie, Valeria Bertacco
University of Michigan

Collaborative Accelerators for In-Memory
MapReduce on Scale-up Machines

ASP-DAC 2019
January 24, 2019 Tokyo, Japan

2

Data-intensive applications challenges

3

• Simplified parallel programming
models (e.g. MapReduce)

Data-intensive applications challenges

• Complex parallel programming models
(e.g. Pthreads, OpenCL, OpenMP)

Challenge #1 :

Solution:

4

• Simplified parallel programming
models (e.g. MapReduce)

Data-intensive applications challenges

Dark silicon

New features

• Complex parallel programming models
(e.g. Pthreads, OpenCL, OpenMP)

• Inefficiency in new hardware
systems due to poor device scaling

Accelerator-rich architectures

Challenge #1 : Challenge #2 :

Solution: Solution:

5

MapReduce – WordCount example

Input

car bus
car car

bus

car bus
bus car

bus

car car
car car

6

MapReduce – WordCount example

Input Split

car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

7

<car,1>
…

<bus,1>

<car,1>
…

<bus,1>

MapReduce – WordCount example

Input Split Map

car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

Map

Map

Map

<car,1>
…

8

<car,2>
<bus,3>

<car,4>

<car,3>
<bus,2>

<car,1>
…

<bus,1>

<car,1>
…

<bus,1>

MapReduce – WordCount example

Input Split Map

Combine

Combine
car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

Map

Map

Map

Combine

Combine

<car,1>
…

9

<car,1>
…

<bus,1>

<car,1>
…

<bus,1>

MapReduce – WordCount example

Input Split Map

Combine

Combine
car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

Map

Map

Map

Combine

Combine

Partition

<car,3>

<bus,2>

<car,2>

<bus,3>

<car,1>
…

<car,4>

10

<car,2>

<bus,3>

<car,1>
…

<bus,1>

<car,1>
…

<bus,1>

<bus, 2>

<bus, 3>

<car, 3>

MapReduce – WordCount example

Input Split Map Shuffle/Reduce

Combine

Combine

Reduce

Reduce<car, 2>

car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

Map

Map

Map

Combine

Combine

<car, 4>

Partition

<car,3>

<bus,2>

<car,1>
…

<car,4>

11

<car,4>

<car,1>
…

<bus,1>

<car,1>
…

<bus,1>

<bus, 2>

<bus, 3>

<car, 3>

MapReduce – WordCount example

Input Split Map Shuffle/Reduce Output

Combine

Combine

Reduce

Reduce<car, 2>
car, 9

bus, 5

car bus
car car

bus

car car
car car

car bus
bus car

bus

car bus
car car

bus

car bus
bus car

bus

car car
car car

Map

Map

Map

Combine

Combine

<car, 4>

Partition

<car,3>

<bus,2>

<car,2>

<bus,3>

<car,1>
…

12

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

13

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

14

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

15

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

16

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

17

MapReduce implementations

GPU:

Mars @ HKUST

Map

Map

Map

Combine

Combine

Combine

Partition

Partition

Partition

Reduce

Reduce

CMP/Scale-up:

Phoenix++ @ Stanford
Scale-out:

Hadoop @ Yahoo

focus of this work

18

• Execution breakdown

0

500

1,000

1,500

2,000

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

map combine

partition shuffle/reduce

Phoenix++ studies

16-core, Intel Xeon E5-2630 Server
wc: word count

avg: average

mm: min-max

pvc: page view count

h-img: histogram image

h-rt: histogram user

h-mv: histogram movie

sc: sequence count

Workload description

19

• Execution breakdown

0

500

1,000

1,500

2,000

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

map combine

partition shuffle/reduce

Phoenix++ studies

16-core, Intel Xeon E5-2630 Server

map & combine dominate

wc: word count

avg: average

mm: min-max

pvc: page view count

h-img: histogram image

h-rt: histogram user

h-mv: histogram movie

sc: sequence count

Workload description

20

• Execution breakdown

0

500

1,000

1,500

2,000

e
x
e
c
u
ti
o
n
 t
im

e
 (

m
s
)

map combine

partition shuffle/reduce

Phoenix++ studies

16-core, Intel Xeon E5-2630 Server

• Inefficiencies:
• Serial execution of map and combine phases
• Inefficient key-value lookup during combine phase

map & combine dominate

wc: word count

avg: average

mm: min-max

pvc: page view count

h-img: histogram image

h-rt: histogram user

h-mv: histogram movie

sc: sequence count

Workload description

21

CASM overview

Core0 Core1Accelerator Accelerator
On-chip
network

<K0,V0> <K1,V1><K0,V0> <K1,V1>

Node #1 Node #2

• Execution flow

22

CASM overview

Core0 Core1Accelerator Accelerator
On-chip
network

<K0,V0> <K1,V1><K0,V0> <K1,V1>

Node #1 Node #2

Time

Phoenix++ in CMP Phoenix++ in CMP + CASM

• Execution flow

23

CASM overview

Core0 Core1Accelerator Accelerator
On-chip
network

<K0,V0> <K1,V1><K0,V0> <K1,V1>

Node #1 Node #2

Time

Phoenix++ in CMP Phoenix++ in CMP + CASM

• Execution flow

24

CASM overview

Core0 Core1Accelerator Accelerator
On-chip
network

<K0,V0> <K1,V1><K0,V0> <K1,V1>

Node #1 Node #2

Executed
by cores in

parallel

Executed by the
collaborative
accelerators

Time

Phoenix++ in CMP Phoenix++ in CMP + CASM

• Execution flow

25

• Scalable and collaborative accelerators

• Parallel execution of map and combine
phases

• Faster execution of combine phase by the
accelerators

• In-hardware hash function

Key contributions
Core Accelerator

26

• Each accelerator has two main storage structures

CASM high-level architecture

router

core

cache
ac

ce
l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l
router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

27

• Each accelerator has two main storage structures

CASM high-level architecture

router

core

cache
ac

ce
l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l
router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

router

core

cache

ac
ce

l

key value

car 3

bus 2

train 2

local scratchpad

key value

plane 1

truck 1

home scratchpad

high frequency
keys aggregated

locally

low frequency
keys aggregated at

their home

<plane,1>

<truck,1>

28

• Option one: local-only
key-value pairs replicated
across multiple accelerators

Storage design space exploration
• Option two: home-only

a key-value pair exists only in
one location

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

accel0 accel1 accel2
key value

car 3

truck 1

plane 1

accel0
key value

train 2

ship 1

bicycle 2

accel1
key value

bus 2

motor 1

rocket 1

accel2

29

key value

car 3

truck 1

plane 1

train 2

ship 1

bicycle 2

bus 2

motor 1

rocket 1

• Option one: local-only
key-value pairs replicated
across multiple accelerators

Storage design space exploration
• Option two: home-only

a key-value pair exists only in
one location

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

accel0 accel1 accel2

unified large memory
with no replication

30

• Option one: local-only
key-value pairs replicated
across multiple accelerators

Storage design space exploration
• Option two: home-only

a key-value pair exists only in
one location

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

key value

car 3

bus 2

train 2

accel0 accel1 accel2
key value

car 3

truck 1

plane 1

accel0
key value

train 2

ship 1

bicycle 2

accel1
key value

bus 2

motor 1

rocket 1

accel2

storage options network traffic memory traffic

local-only low high

local + home low low

home-only high low

31

• “frequency” and “collision” bits are stored in scratchpads

Key-value pair eviction policy

➢ Frequency and collision
update units:

➢ Simple heuristic function to
identify frequently occurring keys:

is match found?

increment
frequency

increment
collision

Yes

No
is freq. >= coll.?

No

new kv is sent to
destination

stored kv is
evicted

Yes

key value frequency collisionScratchpad structure:

32

2. in case of collision,
kv with lowest (freq.
– coll.) value

• “frequency” and “collision” bits are stored in scratchpads

Key-value pair eviction policy

➢ Frequency and collision
update units:

➢ Simple heuristic function to
identify frequently occurring keys:

is match found?

increment
frequency

increment
collision

Yes

No
is freq. >= coll.?

No

new kv is sent to
destination

stored kv is
evicted

Yes

key value frequency collisionScratchpad structure:

• Each scratchpad is augmented with victim scratchpad

main scratchpad victim scratchpad

1. evicted kv

2. in case of aggregation,
matched kv

3. in case of aggregation,
newly evicted kv

to destination

33

Accelerator architecture

=

kv-pair from
network

kv-pair from
local core

local scratchpad

valid key value freq coll
way-1 way-2

victim scratchpad
evicted kv-pair

valid key value freq coll

home scratchpad

valid key value freq coll
way-1 way-2

victim scratchpad
evicted kv-pair

valid key value freq coll

freq coll

frequency/collision
update unit

key hash
unit

partition
stage unit

key-value pair

accel_

is_home

hash, enable

hash,

enable

to home accelerator via network

spilled key-

value pair

aggregate unit

value value freq coll

frequency/collision
update unit

aggregate unit

value value

to memory via cache

spilled key-

value pair

accel_ID

hash key

34

Experimental framework

Parameter Value

Scratchpad size 16KB

#entries per victim scratchpad 8

Max. key size 64 bits

Max. value size 64 bits

Freq. & coll. size 8 bits

• Scale-up CMP configuration
(Gem5/Garnet)

Parameter Value

Core 64 cores, OoO, 8-wide

L1 D&I caches 16KB

L2 cache (shared) 128KB per core/slice

Coherence MOESI directory-based

Memory 4xDDR3-1600, 12GB/s

• CASM configuration
(Gem5/Garnet)

35

Experimental framework

Parameter Value

Scratchpad size 16KB

#entries per victim scratchpad 8

Max. key size 64 bits

Max. value size 64 bits

Freq. & coll. size 8 bits

• Scale-up CMP configuration
(Gem5/Garnet)

Parameter Value

Core 64 cores, OoO, 8-wide

L1 D&I caches 16KB

L2 cache (shared) 128KB per core/slice

Coherence MOESI directory-based

Memory 4xDDR3-1600, 12GB/s

• CASM configuration
(Gem5/Garnet)

• Workload characteristics

workload wc mm avg pvc h-img lr h-rt h-mv sc

#unique keys 257K 28K 28K 10K 768 5 5 20K 3.5M

cache locality low low low low high high high high low

36

0
1
2
3
4
5
6
7
8

wc mm avg pvc h-img lr h-rt h-mv sc

s
p

e
e

d
u

p
 (

ti
m

e
s
)

CMP CMP + CASM CMP + Ideal CASM

2
6
.6

2
x

1
2

.1
3
x

1
2
.7

8
x

Performance and energy analysis

• > 4x speedup on average

• > 3.5x energy saving on average

37

0
1
2
3
4
5
6
7
8

wc mm avg pvc h-img lr h-rt h-mv sc

s
p

e
e

d
u

p
 (

ti
m

e
s
)

CMP CMP + CASM CMP + Ideal CASM

2
6
.6

2
x

1
2
.1

3
x

1
2
.7

8
x

Performance and energy analysis

Large #unique keys & no cache locality

• > 4x speedup on average

• > 3.5x energy saving on average

high speedup

38

wc mm avg pvc h-img lr h-rt h-mv sc

e
x
e

c
u

ti
o

n
 t
im

e

b
re

a
k
d

o
w

n
 (

%
)

map combine - hash fnct combine - key-lookup

combine - aggr. partition shuffle & reduce

Sources of performance benefits

Dominant phase:

combine – key-lookup

• Mainly due to offloading the combine phase to CASM

39

wc mm avg pvc h-img lr h-rt h-mv sc

e
x
e

c
u

ti
o

n
 t
im

e

b
re

a
k
d

o
w

n
 (

%
)

map combine - hash fnct combine - key-lookup

combine - aggr. partition shuffle & reduce

Sources of performance benefits

Dominant phase:

map

• Mainly due to offloading the combine phase to CASM

40

wc mm avg pvc h-img lr h-rt h-mv sc

e
x
e

c
u

ti
o

n
 t
im

e

b
re

a
k
d

o
w

n
 (

%
)

map combine - hash fnct combine - key-lookup

combine - aggr. partition shuffle & reduce

Sources of performance benefits

Dominant phase:

combine – aggregation

• Mainly due to offloading the combine phase to CASM

41

0
2
4
6
8

10
12

wc mm avg pvc h-img lr h-rt h-mv sc

s
p
e
e

d
u
p
 (

ti
m

e
s
)

CMP + CASM CMP + CASM local CMP + CASM home

-7.83x -1.37x -2.3x

Speedup contribution: local vs home

• A hybrid of local and home accelerators provides
significant benefits across applications

42

• MapReduce on scale-up machines suffers from:
• serial execution of map and combine phases
• inefficient key-value lookup

• Solution:
• Parallel execution of map and combine phases
• Local/home partitioned on-chip storage
• Aggregation near on-chip storage

• CASM provides:
• >4x in performance on average
• >3.5x in energy saving on average
• < 6% of area overhead

Conclusion

