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Data-intensive applications challenges
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• Simplified parallel programming 
models (e.g. MapReduce)

Data-intensive applications challenges

• Complex parallel programming models 
(e.g. Pthreads, OpenCL, OpenMP)

Challenge #1 :

Solution:
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• Simplified parallel programming 
models (e.g. MapReduce)

Data-intensive applications challenges

Dark silicon

New features

• Complex parallel programming models 
(e.g. Pthreads, OpenCL, OpenMP)

• Inefficiency in new hardware 
systems due to poor device scaling

Accelerator-rich architectures

Challenge #1 : Challenge #2 :

Solution: Solution:
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MapReduce – WordCount example

Input

car bus
car car

bus

car bus 
bus car 

bus

car car
car car



6

MapReduce – WordCount example

Input Split

car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car



7

<car,1>
…

<bus,1>

<car,1> 
…

<bus,1>

MapReduce – WordCount example

Input Split Map

car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car

Map

Map

Map

<car,1>
…



8

<car,2>
<bus,3>

<car,4>

<car,3>
<bus,2>

<car,1>
…

<bus,1>

<car,1> 
…

<bus,1>

MapReduce – WordCount example

Input Split Map

Combine

Combine
car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car

Map

Map

Map

Combine

Combine

<car,1>
…



9

<car,1>
…

<bus,1>

<car,1> 
…

<bus,1>

MapReduce – WordCount example

Input Split Map

Combine

Combine
car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car

Map

Map

Map

Combine

Combine

Partition

<car,3>

<bus,2>

<car,2>

<bus,3>

<car,1>
…

<car,4>



10

<car,2>

<bus,3>

<car,1>
…

<bus,1>

<car,1> 
…

<bus,1>

<bus, 2>

<bus, 3>

<car, 3>

MapReduce – WordCount example

Input Split Map Shuffle/Reduce

Combine

Combine

Reduce

Reduce<car, 2>

car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car

Map

Map

Map

Combine

Combine

<car, 4>

Partition

<car,3>

<bus,2>

<car,1>
…

<car,4>



11

<car,4>

<car,1>
…

<bus,1>

<car,1> 
…

<bus,1>

<bus, 2>

<bus, 3>

<car, 3>

MapReduce – WordCount example

Input Split Map Shuffle/Reduce Output

Combine

Combine

Reduce

Reduce<car, 2>
car, 9

bus, 5

car  bus 
car car

bus

car car
car car

car bus 
bus car 

bus

car bus
car car

bus

car bus 
bus car 

bus

car car
car car

Map

Map

Map

Combine

Combine

<car, 4>

Partition

<car,3>

<bus,2>

<car,2>

<bus,3>

<car,1>
…



12

MapReduce implementations

GPU:

Mars @ HKUST
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CMP/Scale-up: 

Phoenix++ @ Stanford
Scale-out: 

Hadoop @ Yahoo
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• Execution breakdown
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16-core, Intel Xeon E5-2630 Server 

• Inefficiencies:
• Serial execution of map and combine phases
• Inefficient key-value lookup during combine phase

map & combine dominate

wc: word count

avg: average

mm: min-max

pvc: page view count

h-img: histogram image

h-rt: histogram user

h-mv: histogram movie

sc: sequence count

Workload description
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CASM overview 
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On-chip
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• Execution flow
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CASM overview 

Core0 Core1Accelerator Accelerator
On-chip
network

<K0,V0> <K1,V1><K0,V0> <K1,V1>

Node #1 Node #2

Executed 
by cores in 

parallel

Executed by  the 
collaborative 
accelerators

Time

Phoenix++ in CMP Phoenix++ in CMP + CASM 

• Execution flow
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• Scalable and collaborative accelerators

• Parallel execution of map and combine 
phases

• Faster execution of combine phase by the 
accelerators

• In-hardware hash function

Key contributions
Core Accelerator
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• Each accelerator has two main storage structures

CASM high-level architecture
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• Each accelerator has two main storage structures

CASM high-level architecture
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• Option one: local-only
key-value pairs replicated 
across multiple accelerators

Storage design space exploration
• Option two: home-only

a key-value pair exists only in 
one location
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• Option one: local-only
key-value pairs replicated 
across multiple accelerators

Storage design space exploration
• Option two: home-only
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• Option one: local-only
key-value pairs replicated 
across multiple accelerators

Storage design space exploration
• Option two: home-only

a key-value pair exists only in 
one location
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storage options network traffic memory traffic

local-only  low high

local + home low low

home-only high low
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• “frequency” and “collision” bits are stored in scratchpads

Key-value pair eviction policy

➢ Frequency and collision 
update units:

➢ Simple heuristic function to 
identify frequently occurring keys:

is match found?

increment 
frequency

increment 
collision

Yes

No
is freq. >= coll.?

No

new kv is sent to 
destination

stored kv is 
evicted

Yes

key value frequency collisionScratchpad structure:
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2. in case of collision, 
kv with lowest (freq. 
– coll.) value

• “frequency” and “collision” bits are stored in scratchpads

Key-value pair eviction policy

➢ Frequency and collision 
update units:

➢ Simple heuristic function to 
identify frequently occurring keys:

is match found?

increment 
frequency

increment 
collision

Yes

No
is freq. >= coll.?

No

new kv is sent to 
destination

stored kv is 
evicted

Yes

key value frequency collisionScratchpad structure:

• Each scratchpad is augmented with victim scratchpad

main scratchpad victim scratchpad

1. evicted kv

2. in case of aggregation, 
matched kv

3. in case of aggregation, 
newly evicted kv

to destination
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Accelerator architecture

=
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valid key value freq coll
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evicted kv-pair

valid key value freq coll

home scratchpad

valid key value freq coll
way-1 way-2
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evicted kv-pair

valid key value freq coll
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frequency/collision 
update unit

key hash 
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partition 
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accel_
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hash, enable

hash, 
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to home accelerator via network

spilled key-
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aggregate unit

value   value freq coll

frequency/collision 
update unit

aggregate unit

value   value

to memory via cache

spilled key-

value pair

accel_ID

hash key
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Experimental framework

Parameter Value

Scratchpad  size 16KB

#entries per victim scratchpad 8

Max. key size 64 bits

Max. value size 64 bits

Freq. & coll. size 8 bits

• Scale-up CMP configuration 
(Gem5/Garnet)

Parameter Value

Core 64 cores, OoO, 8-wide

L1 D&I caches 16KB

L2 cache (shared) 128KB per core/slice

Coherence MOESI directory-based

Memory 4xDDR3-1600, 12GB/s 

• CASM configuration 
(Gem5/Garnet)
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Experimental framework

Parameter Value

Scratchpad  size 16KB

#entries per victim scratchpad 8

Max. key size 64 bits

Max. value size 64 bits

Freq. & coll. size 8 bits

• Scale-up CMP configuration 
(Gem5/Garnet)

Parameter Value

Core 64 cores, OoO, 8-wide

L1 D&I caches 16KB

L2 cache (shared) 128KB per core/slice

Coherence MOESI directory-based

Memory 4xDDR3-1600, 12GB/s 

• CASM configuration 
(Gem5/Garnet)

• Workload characteristics

workload wc mm avg pvc h-img lr h-rt h-mv sc

#unique keys 257K 28K 28K 10K 768 5 5 20K 3.5M

cache locality low low low low high high high high low



36

0
1
2
3
4
5
6
7
8

wc mm avg pvc h-img lr h-rt h-mv sc

s
p

e
e

d
u

p
 (

ti
m

e
s
)

CMP CMP + CASM CMP + Ideal CASM

2
6
.6

2
x

1
2

.1
3
x

1
2
.7

8
x

Performance and energy analysis

• > 4x speedup on average

• > 3.5x energy saving on average



37

0
1
2
3
4
5
6
7
8

wc mm avg pvc h-img lr h-rt h-mv sc

s
p

e
e

d
u

p
 (

ti
m

e
s
)

CMP CMP + CASM CMP + Ideal CASM

2
6
.6

2
x

1
2
.1

3
x

1
2
.7

8
x

Performance and energy analysis

Large #unique keys & no cache locality

• > 4x speedup on average

• > 3.5x energy saving on average

high speedup 
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• Mainly due to offloading the combine phase to CASM 
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• MapReduce on scale-up machines suffers from:
• serial execution of map and combine phases
• inefficient key-value lookup

• Solution:
• Parallel execution of map and combine phases 
• Local/home partitioned on-chip storage
• Aggregation near on-chip storage 

• CASM provides: 
• >4x in performance on average
• >3.5x in energy saving on average
• < 6% of area overhead

Conclusion


