Design of Gate-Leakage-Based Timer Using an Amplifier-Less Replica-Bias Switching Technique in 55-nm DDC CMOS

<u>Atsuki Kobayashi</u>¹, Yuya Nishio¹, Kenya Hayashi¹, Shigeki Arata¹, and Kiichi Niitsu^{1, 2}

> ¹Nagoya University, Japan ²JST/PRESTO, Japan

24th Asia and South Pacific Design Automation Conference Jan. 21–24, 2019 Tokyo Odaiba Waterfront, Japan 1A-5

Motivation of This Work

- Sensor systems for biomedical applications
 - Energy harvesting
 - Solar, thermoelectric, piezoelectric
 - Energy from biological systems
 - Biofuel Cells

A. Kobayashi, et al., *TBioCAS* 2017.

Technical challenge in timer circuit

 Strict frequency stability in the deep subthreshold region

1A-5

Overview of This Work

Objective of this work and main techniques

 Gate-leakage-based timer that can achieve efficient operation in the deep subthreshold region

- Frequency stability
- Low voltage operation

Low supply sensitivity

^{1A-5} Proposed Gate-Leakage-Based Timer

Amplifier-less replica-bias switching technique with logic circuits

Test chip
 55-nm DDC CMOS

A. Kobayashi et al., *CICC* 2018

Performance Summary

• Improvements in the low supply voltage performance

	This Work	[4] CICC 2007	[5] JSSC 2013	[6] JSSC 2016
Technology (nm)	55 (DDC)	130	130	65
Architecture	Amplifier-Less	Single-Stage	Multi-Stage	Capacitive
	Replica-Bias Switching	l opology	l opology	Discharging
Supply Voltage (V)	0.35	0.45	0.7	0.5
Power (nW)	10	0.12	0.66	0.044
Frequency (Hz)	330 (423 ^a)	0.09	5	2.8
Energy Efficiency (pJ/cycle)	32 (25 °)	1333	132	15.8
Temp. Sensitivity (ppm/°C)	1200	1600	31	1260
Temp. Range (°C)	-20 to 80	0 to 80	-20 to 60	-40 to 60
Supply Sensitivity (ppm/mV)	2310 (340 ^b)	1500	N/A	1600
Supply Voltage Range (V)	0.25 - 0.5 (0.3 - 0.5 ^b)	0.3 - 0.5	N/A	0.48 - 0.52
Allan Deviation Floor (ppm)	200	N/A	N/A	500
Area (mm²)	0.0022 (0.0034 ^b)	0.00048	0.015	0.026

A. Kobayashi et al., CICC 2018

^{a.} VNW = 250 mV

^{b.} w/ Native NMOS Header

Acknowledgments

This research was financially supported by JST, PRESTO (No. JPMJPR15D5), by Council for Science. Technology and Innovation(CSTI), Cross-ministerial Strategic Innovation Promotion Program(SIP), "Energy systems toward a decarbonized society" (Funding agency:JST), by a Grant-in-Aid for Scientific Research (S) (No. 25220906), Grant-in-Aid for Young Scientists (A) (No. 16H06088) from the Ministry of Education, Culture, Sports, Science and Technology of Japan, by MIC/SCOPE # 152106004 and **5** # 185106001, by Grant-in-Aid for JSPS Research Fellow (No. 18J21808), and VDEC.