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Mixed-Criticality Systems (MCS)

Tasks with different criticalities share computation resources

©

(+]

Criticality used in functional safety, e.g., automotive

©

Industrial safety standards

o 1SO 26262 — road vehicles
o DO 178C — avionics software
o |EC 61508 — generic standard

o Core concept for MCS is sufficient independence
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Partitioned Scheduling (Hierarchical Scheduling)
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Global Scheduler assign system resources to Local Scheduler
o Tasks scheduled by Local Scheduler
o Misbehaviors do not affect tasks with different criticality levels

o Online local scheduler (flexible), Offline global scheduler (predictable)
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Task Model

o Single-core platform
o Timing parameters for task ;

o Worst-case Execution Time (WCET) ;
Period T;

Relative Deadline D; (D; < T;)

Fixed Priority P;

o Criticality level SIL;
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Partition Model
o Periodic partition:
o Period T
o Deadline Dy (Ds = Ty)
o Capacity G

Partition s; Partition s, Partition s3
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Design of Partitions

o Need to be determined
o Allocation tasks to partitions
o Period : T, Capacity : G
o (Cs, Ts) pairs of each partition obtained®
o Cost function of each partition (e.g., Utilization) defined

o Tasks within partitions are guaranteed schedulable

L Almeida L, Pedreiras P. Scheduling within temporal partitions: response-time analysis and server design[C]//Emsoft. 2004: 95-103.
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Motivation — Offline Partition Scheduling

o Offline scheduling

o Schedule table determined before system runs
o Schedule table size affect : Synthesis time, Memory usage
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Motivation — Hyper-Period

o Hyper-Period

o Schedule is same cross Hyper-Period (HP)
o Least Common Multiple of periods

o Very long Hyper-Period

o Example 1: HP{15, 16, 31, 32, 33} = 163680
o Harmonic relations

¢} T’?fl e Nt

o Example 2: HP{16, 16, 32, 32, 32} = 32
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Motivation — Period vs Utilization
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o Partitions' utilization increased by setting different periods?
o e.g., harmonic periods

o Research problem: to trade-off hyper-period length and system schedulability

2Yoon M K et al. Holistic design parameter optimization of multiple periodic resources in hierarchical scheduling[C]//DATE,2013: 1313-1318.
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Motivation — Overhead between Partitions

o Construct offline schedule table
o Preemptive EDF to simulate within hyper-period
- Utilization < 1 — schedulable
o Several partition slices due to preemption
o Scheduling overhead between partition slices
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Motivation — Overhead between Partitions (Cont.)

o Too many partition slices — too much scheduling overhead — impact schedulability
o EDF is not optimal when overhead considered
o Combine partition slices — reduce utilization — improve schedulability

o Deadline and release constraints not violated
o Possible due to offline scheduling
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Problem Formulation

o Input:

o Task Parameters (including WCET, Deadline, Period, Criticality Level)
o Output:

o Offline schedule table for partitions
o Constraints:

o System is schedulable
o Reduce partition schedule length
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Overall Approach
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Experimental Results (Hyper-Period Value)
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(a) Proposed Approach

o Proposed approach is within several hundreds
o Straight-forward approach (NIS): rounded into nearest integer
o from several hundreds to 10%7
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(b) Straight-forward Approach
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Experimental Results (System Schedulability)
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o HPOA : proposed approach, NIS : straight-forward approach
o Differences in schedulability are smaller than 10%
o Large reduction in hyper-period, small sacrifice on schedulability
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Experimental Results (Scalability)
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o Synthesis is done within scalable time
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Conclusions

o Partitioned and overhead-aware scheduling framework for mixed-criticality systems

o Synthesis schedule table for partitions with reduced schedule length and preserved
system schedulability

o Re-scheduling algorithm to reduce runtime overhead between partitions
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