
Partitioned and Overhead-Aware Scheduling of Mixed-Criticality
Real-Time Systems

Yuanbin Zhou1, Soheil Samii1,2, Petru Eles1, Zebo Peng1

1ESLAB, Linköping University, Sweden

2General Motors R&D, USA

1 / 18



Overview

1 Introduction & System Model

2 Motivation

3 Problem Formulation

4 Proposed Approach

5 Experimental Results

2 / 18



Mixed-Criticality Systems (MCS)

Tasks with different criticalities share computation resources

Criticality used in functional safety, e.g., automotive

Industrial safety standards

◦ ISO 26262 – road vehicles
◦ DO 178C – avionics software
◦ IEC 61508 – generic standard

Core concept for MCS is sufficient independence

3 / 18



Partitioned Scheduling (Hierarchical Scheduling)

Scheduler

Machine

τa2

τa3τa1

Criticality Level a Criticality Level b Criticality Level c

τc2

τc3τc1
τb1 τb2

(a) Integrated Architecture

Local Scheduler a Local Scheduler b Local Scheduler c

Global Scheduler

Machine

τa2

τa3τa1

Criticality Level a Criticality Level b Criticality Level c

τc2

τc3τc1
τb1 τb2

(b) Partitioned Architecture

Global Scheduler assign system resources to Local Scheduler

Tasks scheduled by Local Scheduler

Misbehaviors do not affect tasks with different criticality levels

Online local scheduler (flexible), Offline global scheduler (predictable)

4 / 18



Task Model

Ci

Ti

Single-core platform

Timing parameters for task τi
◦ Worst-case Execution Time (WCET) Ci

◦ Period Ti

◦ Relative Deadline Di (Di ≤ Ti )
◦ Fixed Priority Pi

Criticality level SILi

5 / 18



Partition Model
Periodic partition:
◦ Period Ts

◦ Deadline Ds (Ds = Ts)
◦ Capacity Cs

s1s3s2s1

Cs1

Ts1

CPU

τ1 τ2

Partition s1

τ3

Partition s2

τ4 τ5

Partition s3

6 / 18



Design of Partitions

Need to be determined

◦ Allocation tasks to partitions
◦ Period : Ts , Capacity : Cs

(Cs ,Ts) pairs of each partition obtained1

◦ Cost function of each partition (e.g., Utilization) defined

Tasks within partitions are guaranteed schedulable

1Almeida L, Pedreiras P. Scheduling within temporal partitions: response-time analysis and server design[C]//Emsoft. 2004: 95-103.

7 / 18



Motivation – Offline Partition Scheduling

Offline scheduling

◦ Schedule table determined before system runs
◦ Schedule table size affect : Synthesis time, Memory usage

s1s3s2s1

0 3 4 8 11

Partition Start Time End Time
S1 0 3
S2 3 4
S3 4 8
S1 8 11

8 / 18



Motivation – Hyper-Period

Hyper-Period
◦ Schedule is same cross Hyper-Period (HP)
◦ Least Common Multiple of periods

Very long Hyper-Period
Example 1: HP{15, 16, 31, 32, 33} = 163680

Harmonic relations
◦ Ti+1

Ti
∈ N+

◦ Example 2: HP{16, 16, 32, 32, 32} = 32

s1s3s2s1 s1s3s2s1 s1

Ts1

Hyper-Period

9 / 18



Motivation – Period vs Utilization

Partitions’ utilization increased by setting different periods2

◦ e.g., harmonic periods

Research problem: to trade-off hyper-period length and system schedulability

2Yoon M K et al. Holistic design parameter optimization of multiple periodic resources in hierarchical scheduling[C]//DATE,2013: 1313-1318.

10 / 18



Motivation – Overhead between Partitions

Construct offline schedule table
◦ Preemptive EDF to simulate within hyper-period
· · · Utilization ≤ 1 → schedulable

◦ Several partition slices due to preemption
◦ Scheduling overhead between partition slices

s1

Ts1

Cs1

s1s2s1

Ts1

11 / 18



Motivation – Overhead between Partitions (Cont.)

Too many partition slices → too much scheduling overhead → impact schedulability

EDF is not optimal when overhead considered

Combine partition slices → reduce utilization → improve schedulability
◦ Deadline and release constraints not violated
◦ Possible due to offline scheduling

s1s2s1

s2s1

12 / 18



Problem Formulation

Input:

◦ Task Parameters (including WCET, Deadline, Period, Criticality Level)

Output:

◦ Offline schedule table for partitions

Constraints:

◦ System is schedulable
◦ Reduce partition schedule length

13 / 18



Overall Approach

Start

Construct (Cs ,Ts) search
space for each partition

Hyper-Period optimization

Schedule table con-
struction for partitions

Overhead optimization

Schedulable?

Stop

yes

no

14 / 18



Experimental Results (Hyper-Period Value)

2 4 6 8 10 12 14 16 18 20
Number of Servers

0

50

100

150

200

250

300

350

A
ve

ra
ge

 V
al
ue

 o
f H

yp
er
 P
er
io
d

5 tasks
10 tasks
20 tasks
30 tasks
40 tasks
50 tasks

(a) Proposed Approach

2 4 6 8 10 12 14 16 18 20
Number of Servers

101
104
107
1010
1013
1016
1019
1022
1025
1028
1031
1034
1037

A
ve
ra
ge

 V
al
ue

 o
f H

yp
er
 P
er
io
d

5 tasks
10 tasks
20 tasks
30 tasks
40 tasks
50 tasks

(b) Straight-forward Approach

Proposed approach is within several hundreds
Straight-forward approach (NIS): rounded into nearest integer

from several hundreds to 1037

15 / 18



Experimental Results (System Schedulability)

0.5 0.6 0.7 0.8 0.9 1.0
Task Set Utilization

0

20

40

60

80

100

P
er
ce

nt
ag

e 
of
 S
ch

ed
ul
ab

le
 S
ys
te
m
s 
(%

) NIS (2 Se%)e%s)
HPOA (2 Se%)e%s)

HPOA : proposed approach, NIS : straight-forward approach
Differences in schedulability are smaller than 10%
Large reduction in hyper-period, small sacrifice on schedulability

16 / 18



Experimental Results (Scalability)

2 4 6 8 10 12 14 16 18 20
Number of Servers

0

10

20

30

40

50

60

E
xe

cu
tio

n 
T
im

e 
(s
)

10 tasks
100 tasks
500 tasks

Synthesis is done within scalable time

17 / 18



Conclusions

Partitioned and overhead-aware scheduling framework for mixed-criticality systems

Synthesis schedule table for partitions with reduced schedule length and preserved
system schedulability

Re-scheduling algorithm to reduce runtime overhead between partitions

18 / 18


	Introduction & System Model
	Motivation
	Problem Formulation
	Proposed Approach
	Experimental Results

