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Mixed-Criticality Systems (MCS)

Tasks with different criticalities share computation resources

Criticality used in functional safety, e.g., automotive

Industrial safety standards

◦ ISO 26262 – road vehicles
◦ DO 178C – avionics software
◦ IEC 61508 – generic standard

Core concept for MCS is sufficient independence
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Partitioned Scheduling (Hierarchical Scheduling)
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(b) Partitioned Architecture

Global Scheduler assign system resources to Local Scheduler

Tasks scheduled by Local Scheduler

Misbehaviors do not affect tasks with different criticality levels

Online local scheduler (flexible), Offline global scheduler (predictable)
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Task Model

Ci

Ti

Single-core platform

Timing parameters for task τi
◦ Worst-case Execution Time (WCET) Ci

◦ Period Ti

◦ Relative Deadline Di (Di ≤ Ti )
◦ Fixed Priority Pi

Criticality level SILi
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Partition Model
Periodic partition:
◦ Period Ts

◦ Deadline Ds (Ds = Ts)
◦ Capacity Cs
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Design of Partitions

Need to be determined

◦ Allocation tasks to partitions
◦ Period : Ts , Capacity : Cs

(Cs ,Ts) pairs of each partition obtained1

◦ Cost function of each partition (e.g., Utilization) defined

Tasks within partitions are guaranteed schedulable

1Almeida L, Pedreiras P. Scheduling within temporal partitions: response-time analysis and server design[C]//Emsoft. 2004: 95-103.
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Motivation – Offline Partition Scheduling

Offline scheduling

◦ Schedule table determined before system runs
◦ Schedule table size affect : Synthesis time, Memory usage
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Partition Start Time End Time
S1 0 3
S2 3 4
S3 4 8
S1 8 11
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Motivation – Hyper-Period

Hyper-Period
◦ Schedule is same cross Hyper-Period (HP)
◦ Least Common Multiple of periods

Very long Hyper-Period
Example 1: HP{15, 16, 31, 32, 33} = 163680

Harmonic relations
◦ Ti+1

Ti
∈ N+

◦ Example 2: HP{16, 16, 32, 32, 32} = 32

s1s3s2s1 s1s3s2s1 s1

Ts1
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Motivation – Period vs Utilization

Partitions’ utilization increased by setting different periods2

◦ e.g., harmonic periods

Research problem: to trade-off hyper-period length and system schedulability

2Yoon M K et al. Holistic design parameter optimization of multiple periodic resources in hierarchical scheduling[C]//DATE,2013: 1313-1318.
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Motivation – Overhead between Partitions

Construct offline schedule table
◦ Preemptive EDF to simulate within hyper-period
· · · Utilization ≤ 1 → schedulable

◦ Several partition slices due to preemption
◦ Scheduling overhead between partition slices
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Motivation – Overhead between Partitions (Cont.)

Too many partition slices → too much scheduling overhead → impact schedulability

EDF is not optimal when overhead considered

Combine partition slices → reduce utilization → improve schedulability
◦ Deadline and release constraints not violated
◦ Possible due to offline scheduling

s1s2s1

s2s1
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Problem Formulation

Input:

◦ Task Parameters (including WCET, Deadline, Period, Criticality Level)

Output:

◦ Offline schedule table for partitions

Constraints:

◦ System is schedulable
◦ Reduce partition schedule length
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Overall Approach
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Experimental Results (Hyper-Period Value)
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(a) Proposed Approach
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(b) Straight-forward Approach

Proposed approach is within several hundreds
Straight-forward approach (NIS): rounded into nearest integer

from several hundreds to 1037
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Experimental Results (System Schedulability)
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HPOA : proposed approach, NIS : straight-forward approach
Differences in schedulability are smaller than 10%
Large reduction in hyper-period, small sacrifice on schedulability
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Experimental Results (Scalability)
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Synthesis is done within scalable time
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Conclusions

Partitioned and overhead-aware scheduling framework for mixed-criticality systems

Synthesis schedule table for partitions with reduced schedule length and preserved
system schedulability

Re-scheduling algorithm to reduce runtime overhead between partitions
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