

#### Leakage-Aware Thermal Management for Multi-Core Systems Using Piecewise Linear Model Based Predictive Control

#### Hai Wang

**University of Electronic Science & Technology of China** 

ASP-DAC 2019, Tokyo, Japan

#### Outline

#### • Background

- Problems of leakage-aware DTM
- PWL predictive DTM
- Experimental results
- Conclusion

### Two battles lost against leakage

- Leakage power does not scale like dynamic power
  - Power density increases with technology scaling (Dennard scaling lost)
- Power (heat) removal ability remains the same



## Leakage problems in the new era

- How to determine the active core distributions and power budget?
- Our solution: Greedy Dynamic Power (GDP)
  - Locate active core positions at runtime
  - Compute power budget for each core

H. Wang, et al., "GDP: A Greedy based dynamic power budgeting method for multi/many-core systems in dark silicon", *IEEE Trans. on Computers*, 2019





(a) 9-core system with 5 active cores.



(c) 25-core system with 12 active cores.

(b) 16-core system with 8 active cores.



(d) 25-core system with 13 active cores.

#### Leakage problems in the new era

- How to estimate leakage power distribution at runtime?
- Our solution: Piecewise linear MOR based fast simulation
  - Piecewise linear (PWL) approximation
  - Incremental MOR on local models

H. Wang, et al., "A Fast Leakage-Aware Full-Chip Transient Thermal Estimation Method", IEEE Trans. on Computers, 2018



## The remaining Leakage problem

- How to control the multi-core system temperature considering leakage?
- In another word, how to compute the dynamic power recommendation in leakage-aware DTM?



#### Outline

- Background
- Problems of leakage-aware DTM
- PWL predictive DTM
- Experimental results
- Conclusion

### **Basic framework of Predictive DTM**

- The basic idea of predictive DTM
  - Compute the dynamic power recommendation *P<sub>d</sub>*, which tracks the given target temperature
  - $P_d$  can be solved by optimization using thermal prediction



# The root of problem: leakage is nonlinear!



• Leakage power depends on temperature nonlinearly

#### Problem caused by nonlinearity



Power recommendation P<sub>d</sub> unsolvable due to nonlinearity

#### Piecewise linear (PWL) approximation?

• We used piecewise linear (PWL) approximation for leakageaware thermal estimation before

$$GT(t) + C \frac{dT(t)}{dt} = B(P_d(t) + P_s(T, t))$$
$$\widehat{G}T(t) + C \frac{dT(t)}{dt} = B(P_d(t) + \widehat{P})$$

$$P_s = \widehat{P} + \widehat{H}T$$

**Taylor expansion** 

Local linear thermal model at the local expansion point!



H. Wang, et al., "A Fast Leakage-Aware Full-Chip Transient Thermal Estimation Method", IEEE Trans. on Computers, 2018 Time

# Difficulty of PWL thermal prediction in DTM

- PWL cannot be used here directly
  - We do not know the temperature curve yet in DTM!
  - This is because power is the one to be solved (different from temp. estimation problem before)
  - We only know two things: current temp and target temp
  - How can we determine the expansion points in the prediction process?



#### Outline

#### • Background

- Problems of leakage-aware DTM
- PWL predictive DTM
- Experimental results
- Conclusion

### Determine expansion points in DTM

- Simulate the extreme curve: from ambient to the target
- All other curves should be above the extreme curve
- Put expansion points uniformly in Temp axis
- Determine model switching time points using extreme curve



#### Determine expansion points in DTM

- If current temperature is already close to the target?
- Just use the target as expansion point!



#### PWL thermal model formulation



Generally, the initial temperature T(t) lies between T<sub>i-1</sub> and T<sub>i</sub>, (red dashed line).
The first expansion point is T<sub>i</sub>, corresponding time from t to t + h<sub>i</sub>, and next point is T<sub>i+1</sub>, corresponding time from t + h<sub>i</sub> to t + h<sub>i+1</sub>.

Specially, the initial temperature T(t) is close to the target temperature T<sub>n</sub> (blue dot line).
Only one segment with target temperature T<sub>n</sub> as the expansion point.

# PWL thermal model formulation for single control step

- PWL thermal estimation trace using thermal models expanded
  - at  $T_i T_{i+1}, T_{i+2}, ..., T_n$

$$\begin{split} T(t+h_i) &= \widehat{A}_i T(t) + \widehat{D}_i P_d + \widehat{D}_i \widehat{P}_i \\ T(t+h_{i+1}) &= \widehat{A}_{i+1} T(t+h_i) + \widehat{D}_{i+1} P_d + \widehat{D}_{i+1} \widehat{P}_{i+1}, \\ T(t+h_{i+2}) &= \widehat{A}_{i+2} T(t+h_{i+1}) + \widehat{D}_{i+2} P_d + \widehat{D}_{i+2} \widehat{P}_{i+2}, \\ &\vdots \\ T(t+h_n) &= \widehat{A}_n T(t+h_{n-1}) + \widehat{D}_n P_d + \widehat{D}_n \widehat{P}_n, \end{split}$$

Combining these equations

• PWL thermal model for single control step:  $T(k+1) = \widehat{\mathcal{A}}T(k) + \widehat{\mathcal{D}}P_d(k) + \widehat{\mathcal{D}}_i\widehat{P}_i + \dots + \widehat{\mathcal{D}}_n\widehat{P}_n,$ Y(k+1) = LT(k+1).

where 
$$\widehat{\mathcal{A}} = \widehat{A}_n \widehat{A}_{n-1} \cdots \widehat{A}_i, \ \widehat{\mathcal{D}} = \widehat{A}_n \widehat{A}_{n-1} \cdots \widehat{A}_{i+1} \widehat{D}_i + \widehat{A}_n \widehat{A}_{n-1} \cdots \widehat{A}_{i+2} \widehat{D}_{i+1} + \cdots + \widehat{D}_n,$$
  
 $\widehat{\mathcal{D}}_i = \widehat{A}_n \widehat{A}_{n-1} \cdots \widehat{A}_{i+1} \widehat{D}_i$ 

#### PWL model predictive control framework



#### Note:

Kalman Filter is used for temperature estimation of chip and package

# Predict temperature trajectory for multiple control steps

- The first control time step k + 1(red dashed line):  $T(k+1) = \widehat{\mathcal{A}}T(k) + \widehat{\mathcal{D}}P_d(k) + \widehat{\mathcal{D}}_i\widehat{P}_i + \dots + \widehat{\mathcal{D}}_n\widehat{P}_n,$ Y(k+1) = LT(k+1).
- Assume temperature prediction is close to the target temperature after the first control step (blue dot line):

$$\begin{split} T(k+j) &= \widehat{A}_n T(k+j-1) + \widehat{D}_n P_d(k+j-1) + \widehat{D}_n \widehat{P}_n, \\ Y(k+j) &= LT(k+j), \end{split}$$

Predicted temperature trajectory for multiple control steps

$$\mathcal{Y} = FT(k) + V\mathcal{P}_d + \phi_1 \widehat{\mathcal{P}} + \phi_2 \widehat{\mathcal{P}}_n$$

$$\mathcal{Y} = [Y(k+1)^T, Y(k+2)^T, \dots, Y(k+N_p)^T]^T$$



#### **Compute power recommendation**



- Minimize regulated cost function:  $\mathcal{J} = (\mathcal{Y}_g \mathcal{Y})^T (\mathcal{Y}_g \mathcal{Y}) + \mathcal{P}_d^T R \mathcal{P}_d$
- Future dynamic Power recommendation  $\mathcal{P}_d = (V^T V + R)^{-1} V^T (\mathcal{Y}_g - FT(k) - \phi_1 \widehat{\mathcal{P}} - \phi_2 \widehat{\mathcal{P}}_n)$

The frequencies and task loads will be adjusted according to  $P_d(k)$ 

#### Outline

#### • Background

- Problems of leakage-aware DTM
- PWL predictive DTM
- Experimental results
- Conclusion

#### **Experimental setup**

- Experiment on a 16-core system
- One thermal sensor for each core
- Ambient temperature 40 °C.
- Target temperature 80 °C.

| C11 | C12 | C13 | C14 |
|-----|-----|-----|-----|
| C21 | C22 | C23 | C24 |
| C31 | C32 | C33 | C34 |
| C41 | C42 | C43 | C44 |

Compared with linear model predictive control (called traditional DTM).

#### **Performance comparison**

|                 | $N_c = 1, N_p = 1$ |      |       | $N_{c} = 1, N_{p} = 2$ |      |      | $N_{c} = 1, N_{p} = 3$ |       |      | $N_{c} = 2, N_{p} = 3$ |        |       |      |      |       |       |
|-----------------|--------------------|------|-------|------------------------|------|------|------------------------|-------|------|------------------------|--------|-------|------|------|-------|-------|
| Methods         | time               | mem  | diffe | rence                  | time | mem  | diffe                  | rence | time | mem                    | diffei | rence | time | mem  | diffe | rence |
|                 | (ms)               | (KB) | max   | avg                    | (ms) | (KB) | max                    | avg   | (ms) | (KB)                   | max    | avg   | (ms) | (KB) | max   | avg   |
| Traditional     | 1.01               | 7    | 6.02  | 1.35                   | 1.13 | 13   | 5.97                   | 1.32  | 1.22 | 21                     | 5.86   | 1.34  | 1.30 | 23   | 5.94  | 1.37  |
| New (3 points)  | 1.12               | 14   | 1.25  | 0.84                   | 1.28 | 23   | 1.20                   | 0.81  | 1.39 | 42                     | 1.21   | 0.82  | 1.46 | 44   | 1.23  | 0.85  |
| New (5 points)  | 1.12               | 22   | 1.21  | 0.79                   | 1.28 | 36   | 1.16                   | 0.78  | 1.39 | 65                     | 1.18   | 0.80  | 1.47 | 67   | 1.20  | 0.82  |
| New (7 points)  | 1.13               | 32   | 1.15  | 0.77                   | 1.29 | 51   | 1.12                   | 0.75  | 1.40 | 91                     | 1.09   | 0.76  | 1.47 | 94   | 1.13  | 0.79  |
| New (11 points) | 1.14               | 58   | 1.08  | 0.75                   | 1.30 | 90   | 1.05                   | 0.72  | 1.42 | 150                    | 1.11   | 0.74  | 1.49 | 154  | 1.09  | 0.75  |

- Tracking difference: much smaller
- Computing time: similar to traditional
- Memory cost: increases linearly with expansion point number

Hint: balance accuracy and memory cost with proper expansion point number

#### **Control quality comparison**

- 5 expansion points
- Both DTM methods activated at 1s, target temperature 80 °C.



- Traditional DTM shows large tracking overshot.
- New method has extremely smooth control with little overshot.

#### Conclusion

- A PWL model predictive control based DTM method is proposed.
- The PWL thermal model is concise and can be integrated into the predictive control elegantly.
- A systematic expansion point selection scheme is developed for PWL models.
- We show how to integrate the new PWL thermal model into the predictive control framework.
- The new method outperforms traditional method in control quality.

Thank you!