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Two battles lost against leakage

Leakage 
increases

Core # 
increases

Dark 
silicon

Fix core #
Increase frequency
Best days in performance increase!

Fix frequency
Increase core #

Not all cores operates
@ full freq anymore
We lost Dennard scaling
Solutions needed!

Around 2006 Recently

l Leakage power does not scale like dynamic power
l Power density increases with technology scaling (Dennard scaling lost)

l Power (heat) removal ability remains the same



Leakage problems in the new era
l How to determine the active 

core distributions and power 
budget?

l Our solution: Greedy Dynamic 
Power (GDP)
l Locate active core positions at 

runtime
l Compute power budget for each 

core

H. Wang, et al., “GDP: A Greedy based 
dynamic power budgeting method for 
multi/many-core systems in dark silicon”, 
IEEE Trans. on Computers, 2019
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938 the GDP computed power budget is very close to the global
939 optimal one.

940 5.2 Effectiveness and Performance Tests for
941 Transient Cases
942 GDP is a dynamic based method, meaning it is able to pro-
943 vide power budget adapting to transient running state of
944 the multi/many-core dark silicon system.
945 GDP mainly focuses on computing the power budget
946 dynamically for the multi/many-core dark silicon system.
947 By using the power budget and active core distribution
948 suggestion provided by GDP, many different thermal man-
949 agement methods can be designed and optimized, which is
950 not the main focus of this work. In order to test the dynamic
951 behavior of GDP for transient cases, the same simple task
952 scheduling and dynamic voltage and frequency scaling
953 strategy is used for allmethods: a powermatching determines
954 task scheduling and DVFS is performed when the task on the
955 core consumes more power than the provided power budget.
956 Please note that task scheduling and DVFS are used here only
957 on the purpose of showing power budgeting performance.
958 Advanced task scheduling and DVFS methods may further
959 boost performance but is out of scope of thiswork.
960 In the experiment, GDP is set to compute power budget
961 dynamically for every 10 seconds (h ¼ 10). State-of-the-art
962 power budgetingmethod TSP [18] and neighbor-awaremulti-
963 core dynamic thermal management method NADTM [14] are
964 used for comparison. Two SPEC benchmark applications are
965 running on each active core by round-robin scheduling, with
966 time slice set to be 50 ms [41]. At initiation, the applications
967 are randomly assigned to the active cores. The computing
968 overheads of all methods are considered in the experiments as
969 throughput deduction and management latency. The power
970 consumption is obtained by the power estimator Wattch [42].
971 There are 18 V/F levels (from 0.32V@140MHz to 1V@2GHz)

972for DVFS in our experiment, with DVFS action overhead set
973to be 10ms by following the settings in [43]. The taskmigration
974overhead is set as 10ms according to [44].
975We first verify the effectiveness of TSP and GDP, i.e., we
976check whether the temperature will be constrained below
977the threshold if the given power budget is followed. We
978plot the transient temperature results with GDP and TSP in
979Fig. 9a and 9b, respectively. Because TSP is a static power
980budgeting method, we have to activate cores according to
981the worst case distribution to test if the system temperature
982is properly controlled with TSP power budget. For GDP, the
983cores are activated according to the sub-optimal distribution
984computed by the greedy based algorithm in GDP. From the
985figure, we can see that both power budgets provided by
986TSP and GDP are able to constrain the temperatures of all
987active cores below the user defined thermal threshold (80"C
988in our test case) with the simple task scheduling and DVFS.2

989In Fig. 9a, core temperature switches between high tempera-
990ture and low temperature because GDP may switch active
991core positions dynamically.
992Next, we compareGDPwith the neighbor-aware dynamic
993thermal management method NADTM [14], because both
994methods take neighbor core’s temperature into account.
995The transient temperature results with NADTM is shown in
996Fig. 9c. We see that NADTM is not able to constrain the core
997temperature below the given thermal threshold for the dark
998silicon system. NADTM fails because it is not designed
999considering dark silicon properties. We provide the detailed
1000discussion as follows.
1001The basic idea of NADTM is to use a linear model with
1002three inputs (own current temperature, own increment factor,
1003and neighbor increment factor) and three parameters3 to
1004predict the core’s own temperature.
1005The major problem of using NADTM in dark silicon
1006system is that there are only three inputs and three para-
1007meters (specifically, a;b; g in NADTM paper) in tempera-
1008ture prediction, and only one input and one parameter (g)
1009among them is used to consider all four neighbor cores’
1010impact. This is far from sufficient to consider the complex
1011dark silicon temperature behaviors. To be specific, for dark
1012silicon system, the neighbor cores could be inactive state
1013or off state, and they impact the neighbor cores quite differ-
1014ently when in different state. If we put all neighbor cores’
1015on-off combinations and different benchmarks into the
1016training process, we end up with a large number of training
1017samples with large diversity. For this overdetermined prob-
1018lem, the least square method will find a solution a;b; g
1019which works best for all samples. However, because of the
1020large number and large diversity of the samples, the least
1021square solution even has large error for the training sam-
1022ples. In another word, it is impractical to use a model with
1023only three parameters to predict the complex temperature
1024behavior of the dark silicon multi-core systems.

Fig. 8. Temperature distributions of systems with different core number
and active core number.

2. In the TSP test case, temperatures of the active cores will be signif-
icantly lower than threshold if active core distribution other than the
worst case one is used. This is because TSP is a static power budgeting
method, which has to provide over pessimistic (i.e., much lower than
real) power budget to guarantee thermal safety of the system in all con-
ditions including the worst one.

3. The three parameters are trained using least-square estimation in
NADTM algorithm.
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Leakage problems in the new era

l How to estimate leakage power distribution at runtime?

l Our solution: Piecewise linear MOR based fast simulation

l Piecewise linear (PWL) approximation

l Incremental MOR on local models

H. Wang, et al., “A Fast Leakage-Aware Full-Chip Transient Thermal Estimation 

Method”, IEEE Trans. on Computers, 2018

Very different from dynamic power, the static power ps,
caused by leakage current Ileak as

ps ¼ VddIleak; (1)

is independent of the chip’s activity. Values of static power
are harder to obtain than dynamic power, mainly because
of the special temperature sensitivity caused by leakage cur-
rent. IC leakage current has various components, including
subthreshold current, gate current, reverse-biased junction
leakage current and so on. Among these components, sub-
threshold current Isub and gate leakage current Igate are the
main parts. As a result, we can ignore other parts of leakage
and get the leakage current approximation [19], [24], [25] as

Ileak ¼ Isub þ Igate: (2)

The subthreshold current is modeled in the commonly
accepted MOSFET transistor model BSIM 4 [26] as (also
apply VDS # vT [19])

Isub ¼ KvT
2e

VGS$Vth
hvT 1$e

$VDS
vT

! "
%KvT

2e
VGS$Vth

hvT ; (3)

where vT ¼ kTp
q is the thermal voltage and Tp is a scalar rep-

resenting temperature at one place,1 K and h are process
related parameters, and Vth is the threshold voltage.

While the subthreshold current is highly related to tem-
perature, the gate current Igate, which results from tunneling
between the gate terminal and the other three terminals,
does not depend on temperature and can be considered as a
technology-dependent constant.

Apparently, the leakage current has a complex relation-
ship with temperature. In this work, we use (1), (2), and (3) to
model the static power considering such relationship. The

parameters of leakage current can be obtained by curve fit-
ting using HSPICE simulation data. In order to see the accu-
racy of the model used, Fig. 1 shows an HSPICE simulation
result of leakage using TSMC 65nm process model and its
curve fitting result using approximate leakage model. From
the figure, we can see that the static power model has high
accuracy for all common temperatures of IC chips.

We can conclude that the static power distribution
depends mainly on the temperature distribution for a cer-
tain chip with constant physical parameters. Since tempera-
ture also depends on power, in order to view the whole
picture, thermal model of IC chip is used to describe tem-
perature’s dependency on power as shown next.

3.2 Thermal Modeling
In order to calculate the full-chip temperature distribution, a
thermal model with the ability to link the power and tem-
perature is needed. To perform thermal analysis for an IC
chip, we usually divide both the chip and its package into
multiple blocks called thermal nodes, with the partition
granularity determined by accuracy requirements. Then we
compute the thermal resistances and capacitances among
these thermal nodes, which model the thermal transport
and power response behaviors.

For example, for a certain chip with n total thermal
nodes, we can generate its thermal model as

GT ðtÞ þ C
dT ðtÞ
dt

¼ BP ðT; tÞ;

Y ðtÞ ¼ LT ðtÞ;
(4)

where T ðtÞ 2 Rn is the temperature vector (distinguished
from Tp, which is a scalar representing temperature at only
one place), representing temperatures at n places of the chip
and package; G 2 Rn( n and C 2 Rn( n contain equivalent
thermal resistance and capacitance information respec-
tively; B 2 Rn( l stores the information of how powers are
injected into the thermal nodes; P ðT; tÞ 2 Rl is the power
vector, which contains power consumptions of l compo-
nents on chip, including both dynamic power vector Pd and
static power vector Ps, i.e., P ðT; tÞ ¼ PsðT; tÞ þ PdðtÞ,
reminding that static power PsðT; tÞ is actually a function of
temperature T ; Y ðtÞ 2 Rm is the output temperature vector,
containing only temperatures of thermal nodes that the user

TABLE 1
Mathematical Notations

p, P total power in scalar form and vector form
pd, Pd dynamic power in scalar form and vector form
ps, Ps static power in scalar form and vector form
Ileak total leakage current
Isub, Igate subthreshold current and gate leakage current
Ilin linearized subthreshold current
vT thermal voltage
Tp, T temperature in scalar form and vector form
Tp0 Taylor expansion temperature point
K, h process related parameters for leakage current
P0, A s vector and matrix for linear static power model (9)
G, C, B, L thermal model matrices of the whole system
Y temperature vector with only chip temperatures
Gl new Gmatrix for linearized thermal model
M sampling response matrix used for MOR
Ma newM at new Taylor expansion points
ML sampling response matrix with bothM andMa

U , S, V SVD matrices ofM as in (15)
Ut, St, Vt SVD matrices inside incremental SVD
F ,H, UL, SL temporary matrices inside incremental SVD
Q, R QR factorization matrices inside incremental SVD
Ur the projection matrix in MOR
Ĝl, Ĉ, B̂, L̂ reduced linearized thermal model matrices
T̂ temperature vector in the reduced thermal model

Fig. 1. Comparison of leakage of a TSMC 65 nm process MOSFET from
HSPICE simulation with its curve fitting result using (3). An example of
temperature region division is also shown in the figure, which will be dis-
cussed later.

1. T introduced latter in (4) is a vector representing temperatures at
multiple positions.
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are very close to the golden curve as well, showing very
small estimation errors. Such observation means that using
Taylor expansion based local linear thermal models for

thermal estimation is accurate (verified by curve “lin”), and
further performing MOR on the linear thermal models (veri-
fied by curve “lin & svd batch”) and even MOR with incre-
mental SVD update (verified by curve “lin & svd update”)
introduces negligible estimation error. The curve of TILTS
is far away from the golden one for most estimation time,
showing large estimation error. This is because the linear
leakage model of TILTS is only accurate around its single
Taylor expansion point (80!C in this experiment).

We also would like to see how the new method changes
linear models and updates the projection matrix Ur during
the thermal estimation process. So, we plot the maximum
transient temperature errors across the chip for all three
cases in Fig. 6, and also mark the linear model change points
and projection matrix Ur update points in the figure. We can
see that for all three cases, every time the maximum thermal
estimation error is going to violate our pre-defined error
threshold, the linear thermal model is changed by using the
new Taylor expansion points, resulting in an immediate
and significant drop in estimation error, as expected. Fur-
thermore, “lin & svd batch” and “lin & svd update” show
slightly larger thermal estimation errors than “lin only”
case. This means MOR did introduce small extra error as
expected, but it can significantly reduce estimation time as
will be shown later. The transient maximum thermal esti-
mation error waveforms from “lin & svd batch” and “lin &
svd update” are very similar to each other, meaning using

Fig. 6. Accuracy comparison and maximum estimation error traces of the
proposed method on the 16-core chip.

Fig. 7. Full-chip power distribution and thermal distribution estimation
errors of the 16-core chip at a random time point.
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l How to control the multi-core system temperature considering 
leakage?

l In another word, how to compute the dynamic power 
recommendation in leakage-aware DTM?

The remaining Leakage problem

Multi-core 
system plant

Thermal sensor 
readings

Dynamic power 
recommendation

Leakage-aware 
DTM
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Basic framework of Predictive DTM
l The basic idea of predictive DTM

l Compute the dynamic power recommendation Pd, which tracks the given 
target temperature

l Pd can be solved by optimization using thermal prediction

minimize

Temp

Time

Target Temp

Now

Control step
Current Temp

thermal prediction



The root of problem: leakage is 
nonlinear!

l Leakage power depends on temperature nonlinearly

ASP-DAC 2019, Jan. 2019, Tokyo, Japan X. Guo et al.
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Figure 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting re-
sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-
ligible overhead introduced.

2 BACKGROUND
In this section, the leakage power model used in this work will be
introduced first. After that, we briefly review thermal management
using model predictive control (MPC) and reveal its problem for
leakage-aware DTM.

2.1 Modeling of the leakage power
The total power of chip is composed of dynamic power pd and
leakage power ps (which is also called static power). The dynamic
power depends on the activity of the chip, and thus can be eas-
ily estimated by performance counter based methods [14]. Unlike
dynamic power, leakage power ps is independent of the chip’s ac-
tivity. Instead, it depends on the temperature of the chip, and can
be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-
perature) and gate leakage current Iдate (which can be considered
as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,
and Vth is the threshold voltage. Apparently, the leakage power
has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given
in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage
using TSMC 65 nm process model and its curve fitting result using
approximate leakage model. From the figure, we can see that the
leakage power model (1), (2) has high accuracy for all common
temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model
should be built first. For a l-core systemwithm total thermal nodes,
we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from
scaler Tp ), representing temperatures atm places of the chip and
package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is
the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix
which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-
cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and
D ∈ Rm×l are constant matrices which are computed offline for a
given time step h [9].

By using thermal model (4), MPC calculates the future power
recommendation Pd in order to track a user defined temperature,
with the following steps.

First, at current time k , we denote the future dynamic power
trajectory (which is unknown and needs to be computed in the
end) into the futureNc steps (whereNc is called the control horizon
in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC
and Y (k + j) is the predicted temperatures at time k + j using infor-
mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is
written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-
perature Y as close as possible to the target temperature Yд by
adjusting the dynamic power Pd , which is equivalent to minimiz-
ing the following cost function

J = (Yд −Y)T (Yд −Y) + PT
d RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.
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Figure 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting re-
sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-
ligible overhead introduced.

2 BACKGROUND
In this section, the leakage power model used in this work will be
introduced first. After that, we briefly review thermal management
using model predictive control (MPC) and reveal its problem for
leakage-aware DTM.

2.1 Modeling of the leakage power
The total power of chip is composed of dynamic power pd and
leakage power ps (which is also called static power). The dynamic
power depends on the activity of the chip, and thus can be eas-
ily estimated by performance counter based methods [14]. Unlike
dynamic power, leakage power ps is independent of the chip’s ac-
tivity. Instead, it depends on the temperature of the chip, and can
be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-
perature) and gate leakage current Iдate (which can be considered
as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,
and Vth is the threshold voltage. Apparently, the leakage power
has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given
in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage
using TSMC 65 nm process model and its curve fitting result using
approximate leakage model. From the figure, we can see that the
leakage power model (1), (2) has high accuracy for all common
temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model
should be built first. For a l-core systemwithm total thermal nodes,
we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from
scaler Tp ), representing temperatures atm places of the chip and
package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is
the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix
which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-
cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and
D ∈ Rm×l are constant matrices which are computed offline for a
given time step h [9].

By using thermal model (4), MPC calculates the future power
recommendation Pd in order to track a user defined temperature,
with the following steps.

First, at current time k , we denote the future dynamic power
trajectory (which is unknown and needs to be computed in the
end) into the futureNc steps (whereNc is called the control horizon
in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC
and Y (k + j) is the predicted temperatures at time k + j using infor-
mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is
written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-
perature Y as close as possible to the target temperature Yд by
adjusting the dynamic power Pd , which is equivalent to minimiz-
ing the following cost function

J = (Yд −Y)T (Yд −Y) + PT
d RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.
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Figure 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting re-
sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-
ligible overhead introduced.

2 BACKGROUND
In this section, the leakage power model used in this work will be
introduced first. After that, we briefly review thermal management
using model predictive control (MPC) and reveal its problem for
leakage-aware DTM.

2.1 Modeling of the leakage power
The total power of chip is composed of dynamic power pd and
leakage power ps (which is also called static power). The dynamic
power depends on the activity of the chip, and thus can be eas-
ily estimated by performance counter based methods [14]. Unlike
dynamic power, leakage power ps is independent of the chip’s ac-
tivity. Instead, it depends on the temperature of the chip, and can
be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-
perature) and gate leakage current Iдate (which can be considered
as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,
and Vth is the threshold voltage. Apparently, the leakage power
has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given
in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage
using TSMC 65 nm process model and its curve fitting result using
approximate leakage model. From the figure, we can see that the
leakage power model (1), (2) has high accuracy for all common
temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model
should be built first. For a l-core systemwithm total thermal nodes,
we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from
scaler Tp ), representing temperatures atm places of the chip and
package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is
the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix
which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-
cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and
D ∈ Rm×l are constant matrices which are computed offline for a
given time step h [9].

By using thermal model (4), MPC calculates the future power
recommendation Pd in order to track a user defined temperature,
with the following steps.

First, at current time k , we denote the future dynamic power
trajectory (which is unknown and needs to be computed in the
end) into the futureNc steps (whereNc is called the control horizon
in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC
and Y (k + j) is the predicted temperatures at time k + j using infor-
mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is
written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-
perature Y as close as possible to the target temperature Yд by
adjusting the dynamic power Pd , which is equivalent to minimiz-
ing the following cost function

J = (Yд −Y)T (Yд −Y) + PT
d RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.

Temperature
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l We used piecewise linear (PWL) approximation for leakage-
aware thermal estimation before

Piecewise linear (PWL) approximation?
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically
for practical consideration [1, 16].

Next, optimization is performed to find thePd whichminimizes
(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-
able. Therefore, the optimization problem (8) cannot be solved to
find the future power recommendation, meaning predictive con-
trol cannot be directly used for the leakage-aware thermal man-
agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method
using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we first show the formula-
tion of the local linear thermal model (at a Taylor expansion point)
which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-
ing Taylor expansion on the original nonlinear model (1), (2), ex-
pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the
page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we
obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-
cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation
In this part, we formulate the PWL thermal model using the lo-
cal linear thermal model presented in Section 3.1. The PWL ther-
mal model can then be integrated into the predictive control frame-
work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-
aware DTM. Although there is PWL approximation based leakage-
aware thermal estimation method [15], it is not straightforward to
apply similar PWL approximation to DTM due to the difficulty in
Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control
step. T1,T2, . . . ,Tn are the potential Taylor expansion points.
t, t +h1, . . . , t +hn are the potential local linear model switch-
ing time points. The black solid line is the extreme temper-
ature trajectory. The red dashed line is a common tempera-
ture trajectory. The blue dot line represents the temperature
trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-
ing the self-estimated temperature or the on-chip thermal sensor
temperature [15]. However, DTM will not know the proper Taylor
expansion points directly, because its computing target is the fu-
ture power recommendation, not the temperature. The only things
that DTM knows are the current temperature, the target temper-
ature, and also the fact that the temperature prediction trajectory
(excited by the unknown future power recommendation to be com-
puted) should be between the two temperatures. In this work, we
propose a novel Taylor expansion points selection scheme as the
following.

First, we define two thermalmanagement cases called rising case
and falling case, depending on the current temperature of the core.
We have the falling case if the current temperature is higher than
the target temperature. DTM should lower the core temperature to
target temperature for reliability in this case. Otherwise, we have
the rising case for performance. Here we use the rising case as
illustration example. Please note that DTM for the falling case can
be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target
temperature of the chip.3 The operating temperature of rising case
lies betweenT0 andTn . We introduce n potential expansion points
in the operating temperature range: {T1,T2, . . . ,Tn }.

4 For simplic-
ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any
integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also
need to determine the potential local model switching time points
{t, t + h1, . . . , t + hn } within one control step. The extreme tem-
perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.
As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically
for practical consideration [1, 16].

Next, optimization is performed to find thePd whichminimizes
(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-
able. Therefore, the optimization problem (8) cannot be solved to
find the future power recommendation, meaning predictive con-
trol cannot be directly used for the leakage-aware thermal man-
agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method
using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we first show the formula-
tion of the local linear thermal model (at a Taylor expansion point)
which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-
ing Taylor expansion on the original nonlinear model (1), (2), ex-
pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the
page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we
obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-
cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation
In this part, we formulate the PWL thermal model using the lo-
cal linear thermal model presented in Section 3.1. The PWL ther-
mal model can then be integrated into the predictive control frame-
work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-
aware DTM. Although there is PWL approximation based leakage-
aware thermal estimation method [15], it is not straightforward to
apply similar PWL approximation to DTM due to the difficulty in
Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control
step. T1,T2, . . . ,Tn are the potential Taylor expansion points.
t, t +h1, . . . , t +hn are the potential local linear model switch-
ing time points. The black solid line is the extreme temper-
ature trajectory. The red dashed line is a common tempera-
ture trajectory. The blue dot line represents the temperature
trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-
ing the self-estimated temperature or the on-chip thermal sensor
temperature [15]. However, DTM will not know the proper Taylor
expansion points directly, because its computing target is the fu-
ture power recommendation, not the temperature. The only things
that DTM knows are the current temperature, the target temper-
ature, and also the fact that the temperature prediction trajectory
(excited by the unknown future power recommendation to be com-
puted) should be between the two temperatures. In this work, we
propose a novel Taylor expansion points selection scheme as the
following.

First, we define two thermalmanagement cases called rising case
and falling case, depending on the current temperature of the core.
We have the falling case if the current temperature is higher than
the target temperature. DTM should lower the core temperature to
target temperature for reliability in this case. Otherwise, we have
the rising case for performance. Here we use the rising case as
illustration example. Please note that DTM for the falling case can
be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target
temperature of the chip.3 The operating temperature of rising case
lies betweenT0 andTn . We introduce n potential expansion points
in the operating temperature range: {T1,T2, . . . ,Tn }.

4 For simplic-
ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any
integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also
need to determine the potential local model switching time points
{t, t + h1, . . . , t + hn } within one control step. The extreme tem-
perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.
As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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Difficulty of PWL thermal prediction 
in DTM
l PWL cannot be used here directly

l We do not know the temperature curve yet in DTM!
l This is because power is the one to be solved (different from temp. 

estimation problem before)
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Determine expansion points in DTM
l Simulate the extreme curve: from ambient to the target
l All other curves should be above the extreme curve
l Put expansion points uniformly in Temp axis
l Determine model switching time points using extreme curve
l Expansion points of other curves can be determined
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Determine expansion points in DTM
l If current temperature is already close to the target?
l Just use the target as expansion point!

Temp

Time

Target Temp

Now

Control step
Ambient Temp



PWL thermal model formulation

• Generally, the initial temperature lies between       and     (red 
dashed line).
The first expansion point is    , corresponding time from   to         ,
and next point is       , corresponding time from          to            .

• Specially, the initial temperature        is close to the target temperature
(blue dot line).
Only one segment with target temperature     as the expansion point.
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically
for practical consideration [1, 16].

Next, optimization is performed to find thePd whichminimizes
(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-
able. Therefore, the optimization problem (8) cannot be solved to
find the future power recommendation, meaning predictive con-
trol cannot be directly used for the leakage-aware thermal man-
agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method
using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we first show the formula-
tion of the local linear thermal model (at a Taylor expansion point)
which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-
ing Taylor expansion on the original nonlinear model (1), (2), ex-
pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the
page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we
obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-
cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation
In this part, we formulate the PWL thermal model using the lo-
cal linear thermal model presented in Section 3.1. The PWL ther-
mal model can then be integrated into the predictive control frame-
work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-
aware DTM. Although there is PWL approximation based leakage-
aware thermal estimation method [15], it is not straightforward to
apply similar PWL approximation to DTM due to the difficulty in
Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control
step. T1,T2, . . . ,Tn are the potential Taylor expansion points.
t, t +h1, . . . , t +hn are the potential local linear model switch-
ing time points. The black solid line is the extreme temper-
ature trajectory. The red dashed line is a common tempera-
ture trajectory. The blue dot line represents the temperature
trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-
ing the self-estimated temperature or the on-chip thermal sensor
temperature [15]. However, DTM will not know the proper Taylor
expansion points directly, because its computing target is the fu-
ture power recommendation, not the temperature. The only things
that DTM knows are the current temperature, the target temper-
ature, and also the fact that the temperature prediction trajectory
(excited by the unknown future power recommendation to be com-
puted) should be between the two temperatures. In this work, we
propose a novel Taylor expansion points selection scheme as the
following.

First, we define two thermalmanagement cases called rising case
and falling case, depending on the current temperature of the core.
We have the falling case if the current temperature is higher than
the target temperature. DTM should lower the core temperature to
target temperature for reliability in this case. Otherwise, we have
the rising case for performance. Here we use the rising case as
illustration example. Please note that DTM for the falling case can
be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target
temperature of the chip.3 The operating temperature of rising case
lies betweenT0 andTn . We introduce n potential expansion points
in the operating temperature range: {T1,T2, . . . ,Tn }.

4 For simplic-
ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any
integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also
need to determine the potential local model switching time points
{t, t + h1, . . . , t + hn } within one control step. The extreme tem-
perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.
As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
i+1, . . . , P̂

T
n ]

T , P̂n = [0T , P̂Tn , . . . , P̂
T
n ]

T ,

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

LÂ

LÂnÂ
.
.
.

LÂ
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,
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,

ϕ1 =
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,

7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
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LÂ
Np−1
n D̂ LÂ
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nD̂i+1 · · · LÂ2
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Np−1
n D̂i+1 · · · LÂ
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
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LÂnD̂i LÂnD̂i+1 · · · LÂnD̂n
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
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Np−1
n D̂i+1 · · · LÂ
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step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)
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LÂ
Np−1
n D̂ LÂ
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LÂ2
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7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
i+1, . . . , P̂

T
n ]

T , P̂n = [0T , P̂Tn , . . . , P̂
T
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7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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Here R = r INc l×Nc l is tuning matrix with r as the tuning param-

eter. The regulation term PT
d
RPd is added to the cost function in

(8) because we prefer power distribution not to change drastically
for practical consideration [1, 16].

Next, optimization is performed to find thePd whichminimizes
(8). However, because there is an integral with the nonlinear Ps
in thermal model (4), we cannot express Y using Pd as the vari-
able. Therefore, the optimization problem (8) cannot be solved to
find the future power recommendation, meaning predictive con-
trol cannot be directly used for the leakage-aware thermal man-
agement.

3 LEAKAGE-AWARE DTM USING PIECEWISE
LINEAR MODEL BASED PREDICTIVE
CONTROL

In this section, we present the new leakage-aware DTM method
using PWL model based predictive control.

3.1 Building local linear thermal model using
Taylor expansion

Before presenting the PWL methods, we first show the formula-
tion of the local linear thermal model (at a Taylor expansion point)
which will be used in PWL approximation.

First, we can get a local linear leakage power model by perform-
ing Taylor expansion on the original nonlinear model (1), (2), ex-
pressed in matrix-vector form as

Ps = P̂ + ĤT , (9)

where P̂ ∈ Rl is a constant vector not associated with temperature

T . Ĥ ∈ Rl×m is a constant rectangular diagonal matrix. Due to the
page limitation, please refer to [15] for the detailed derivation.

Then, by integrating (9) into (3) and letting Ĝ = G − BĤ , we
obtain a local linear thermal model as

ĜT (t) +C
dT (t)

dt
= B(Pd (t) + P̂),

Y (t) = LT (t).
(10)

Similar to (4), the local linear thermal model (10) can be dis-
cretized into the following form butwithout the integral term in (4):

T (t + h) = Â(h)T (t) + D̂(h)Pd + D̂(h)P̂, (11)

where

Â(h) = e−hC
−1Ĝ
, D̂(h) =

∫ h

0
e−(h−τ )C

−1ĜC−1B dτ .

3.2 PWL thermal model formulation
In this part, we formulate the PWL thermal model using the lo-
cal linear thermal model presented in Section 3.1. The PWL ther-
mal model can then be integrated into the predictive control frame-
work for leakage-aware DTM.

3.2.1 Taylor expansion thermal points selection scheme for leakage-
aware DTM. Although there is PWL approximation based leakage-
aware thermal estimation method [15], it is not straightforward to
apply similar PWL approximation to DTM due to the difficulty in
Taylor expansion thermal points selection. In thermal estimation

Figure 2: The sketchmap of the PWLmethod for one control
step. T1,T2, . . . ,Tn are the potential Taylor expansion points.
t, t +h1, . . . , t +hn are the potential local linear model switch-
ing time points. The black solid line is the extreme temper-
ature trajectory. The red dashed line is a common tempera-
ture trajectory. The blue dot line represents the temperature
trajectory which is already very close to the target at time t .

problem, the Taylor expansion point can be easily chosen by us-
ing the self-estimated temperature or the on-chip thermal sensor
temperature [15]. However, DTM will not know the proper Taylor
expansion points directly, because its computing target is the fu-
ture power recommendation, not the temperature. The only things
that DTM knows are the current temperature, the target temper-
ature, and also the fact that the temperature prediction trajectory
(excited by the unknown future power recommendation to be com-
puted) should be between the two temperatures. In this work, we
propose a novel Taylor expansion points selection scheme as the
following.

First, we define two thermalmanagement cases called rising case
and falling case, depending on the current temperature of the core.
We have the falling case if the current temperature is higher than
the target temperature. DTM should lower the core temperature to
target temperature for reliability in this case. Otherwise, we have
the rising case for performance. Here we use the rising case as
illustration example. Please note that DTM for the falling case can
be performed in the same way.

Let us denoteT0 as the lowest temperature andTn as the target
temperature of the chip.3 The operating temperature of rising case
lies betweenT0 andTn . We introduce n potential expansion points
in the operating temperature range: {T1,T2, . . . ,Tn }.

4 For simplic-
ity, assume all the potential expansion points are uniformly placed

in the operating temperature range, i.e.,Ti −Ti−1 =
Tn−T0

n for any
integer i ∈ [1,n], as shown in Fig. 2.

Next, corresponding to the Taylor expansion points, we also
need to determine the potential local model switching time points
{t, t + h1, . . . , t + hn } within one control step. The extreme tem-
perature trajectory in the rising case, which starts from T (t) = T0
and ends at T (t + hn ) = Tn is used to determine these time points.
As shown in Fig. 2, the extreme temperature trajectory is the solid

3Usually, the lowest temperature is set to be the same or slightly higher than the
ambient temperature.
4Please note that T0 is not a potential Taylor expansion point.
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
i+1, . . . , P̂

T
n ]

T , P̂n = [0T , P̂Tn , . . . , P̂
T
n ]

T ,
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LÂ
Np−1
n Â
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7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
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7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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black line, and the switching time point t +hi is chosen as the one
which satisfies T (t + hi ) = Ti for this trajectory.

PWL approximation will be performed by using the linear local
thermal models constructed using some of these potential Taylor
expansion points {T1,T2, . . . ,Tn } switched only at the correspond-
ing switching time points {t, t + h1, . . . , t + hn } as shown in the
next part.

3.2.2 PWL thermal model for temperature prediction. If the cur-
rent temperature T (t) lies between Ti−1 and Ti , the DTM thermal
prediction trajectory should look like the red dashed line in Fig. 2
exited by the future power recommendation (which is unknown
and need to be computed).5 For this trajectory, T (t + hn ) can be
represented6 in the following way.

First,T (t +hi ) (shown as red font in Fig. 2) is represented using
the local linear model (11) expanded at Ti as

T (t + hi ) = ÂiT (t) + D̂iPd + D̂i P̂i , (12)

where Âi = Â(hi ), D̂i = D̂(hi ), and P̂i are the local linear thermal
matrices in (11) with Ti as the expansion point.

Then, temperatures at the subsequent time points t + hi+1, t +
hi+2, . . ., t +hn are represented iteratively by using the local linear
thermal models expanded at time pointsTi+1,Ti+2, . . .,Tn , respec-
tively, as the following:

T (t + hi+1) = Âi+1T (t + hi ) + D̂i+1Pd + D̂i+1P̂i+1,

T (t + hi+2) = Âi+2T (t + hi+1) + D̂i+2Pd + D̂i+2P̂i+2,
.
.
.

T (t + hn) = ÂnT (t + hn−1) + D̂nPd + D̂n P̂n, (13)

where Âj = Â(hj − hj−1) and D̂ j = D̂(hj − hj−1) for j = i + 1, i +
2, . . . ,n.

Finally, the temperature at the end of the control step (t +hn ) is
expressed by combining the equations above as

T (t + hn) = ÂT (t) + D̂Pd + D̂i P̂i + · · · + D̂n P̂n, (14)

where Â = ÂnÂn−1 · · · Âi , D̂ = ÂnÂn−1 · · · Âi+1D̂i + ÂnÂn−1
· · · Âi+2D̂i+1 + · · · + D̂n , and D̂i = ÂnÂn−1 · · · Âi+1D̂i .

In order to be compatible with MPC, we rewrite (14) into the
discrete form as

T (k + 1) = ÂT (k) + D̂Pd (k) + D̂i P̂i + · · · + D̂n P̂n,

Y (k + 1) = LT (k + 1).
(15)

We call this newly formulated thermal model (15) as the PWL ther-
mal model. The PWL thermal model matrices will be computed
offline after Taylor expansion points selection.

Now, we have successfully approximated the original nonlinear
temperature prediction using the PWL thermal model in (15). Next,
we will demonstrate how to formulate the PWL thermal model
based predictive control by replacing the original nonlinear ther-
mal prediction (4) with the PWLmodel based thermal prediction (15).

5The end point of the red dashed line is slightly off the target temperature, because

the regulation term PT
d
RPd is added to the cost function J in (8).

6T (t + hn ) is represented, but not computed, because Pd (the future power recom-
mendation) is the actual unknown to be calculated.

3.3 PWL model based predictive control
With the PWL thermal model (15), MPC should be able to calcu-
late the power recommendation Pd to track a user defined output
temperature as presented in this part.

By analyzing the MPC mechanism, we know the future temper-
ature prediction trajectory can be described as the following. For
the first control time step7 into the future, the temperature predic-
tion trajectory is similar to the red dashed line in Fig. 2, because
the power recommendation will bring the temperature toward the
target temperature. Assume the temperature prediction is close to
the target temperature at time k + 1, then at time k + j, where
j = 2, 3, . . . ,Np , all temperature prediction trajectories should look
like the blue dot line in Fig. 2.

With the observation above, for Np steps temperature predic-
tion into the future (from k to k + Np ), we only need to use the
temperature prediction with multiple Taylor expansion points at
the first control step (from time k to k + 1) expressed by the PWL
thermal model (15).

For the rest of the control steps (from k + 1 to k + Np ), only
one segment of the PWL thermal model (11) is needed with target
temperature Yд (which equals to Tn ) as the expansion point. The
temperature predictions for these steps are expressed by simply
changing hi to hn in (12) and write it into discrete form as

T (k + j) = ÂnT (k + j − 1) + D̂nPd (k + j − 1) + D̂n P̂n,

Y (k + j) = LT (k + j), (16)

where j = 2, 3, . . . ,Np , and Pd (k + j − 1) = 0 for j > Nc .
Combining equations (15) and (16), we can get the predicted

temperature trajectory Y as

Y = FT (k) +VPd + ϕ1P̂ + ϕ2P̂n, (17)

where P̂ = [P̂Ti , P̂
T
i+1, . . . , P̂

T
n ]

T , P̂n = [0T , P̂Tn , . . . , P̂
T
n ]

T ,
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LÂ
Np−1
n D̂i LÂ
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7Please note that the duration from t to t + hn in Fig. 2 equals to only one control
step in MPC (for example, from k to k + 1, or from k + j − 1 to k + j ).
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Figure 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting re-
sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-
ligible overhead introduced.

2 BACKGROUND
In this section, the leakage power model used in this work will be
introduced first. After that, we briefly review thermal management
using model predictive control (MPC) and reveal its problem for
leakage-aware DTM.

2.1 Modeling of the leakage power
The total power of chip is composed of dynamic power pd and
leakage power ps (which is also called static power). The dynamic
power depends on the activity of the chip, and thus can be eas-
ily estimated by performance counter based methods [14]. Unlike
dynamic power, leakage power ps is independent of the chip’s ac-
tivity. Instead, it depends on the temperature of the chip, and can
be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-
perature) and gate leakage current Iдate (which can be considered
as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,
and Vth is the threshold voltage. Apparently, the leakage power
has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given
in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage
using TSMC 65 nm process model and its curve fitting result using
approximate leakage model. From the figure, we can see that the
leakage power model (1), (2) has high accuracy for all common
temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model
should be built first. For a l-core systemwithm total thermal nodes,
we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from
scaler Tp ), representing temperatures atm places of the chip and
package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is
the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix
which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-
cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and
D ∈ Rm×l are constant matrices which are computed offline for a
given time step h [9].

By using thermal model (4), MPC calculates the future power
recommendation Pd in order to track a user defined temperature,
with the following steps.

First, at current time k , we denote the future dynamic power
trajectory (which is unknown and needs to be computed in the
end) into the futureNc steps (whereNc is called the control horizon
in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC
and Y (k + j) is the predicted temperatures at time k + j using infor-
mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is
written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-
perature Y as close as possible to the target temperature Yд by
adjusting the dynamic power Pd , which is equivalent to minimiz-
ing the following cost function

J = (Yд −Y)T (Yд −Y) + PT
d RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.
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Figure 1: Comparison of leakage of a TSMC 65 nm process
MOSFET from HSPICE simulation with its curve fitting re-
sult using (2).

traditionalmethod in thermalmanagement qualitywith neg-
ligible overhead introduced.

2 BACKGROUND
In this section, the leakage power model used in this work will be
introduced first. After that, we briefly review thermal management
using model predictive control (MPC) and reveal its problem for
leakage-aware DTM.

2.1 Modeling of the leakage power
The total power of chip is composed of dynamic power pd and
leakage power ps (which is also called static power). The dynamic
power depends on the activity of the chip, and thus can be eas-
ily estimated by performance counter based methods [14]. Unlike
dynamic power, leakage power ps is independent of the chip’s ac-
tivity. Instead, it depends on the temperature of the chip, and can
be modelled as [7, 10]

ps = Vdd Ileak = Vdd (Isub + Iдate ), (1)

Isub = KvT
2e

VGS −Vth
ηvT

(
1 − e

−VDS
vT

)

≈ KvT
2e

VGS −Vth
ηvT ,

(2)

where subthreshold current Isub (which is highly related to tem-
perature) and gate leakage current Iдate (which can be considered
as a constant) are the main parts of leakage current Ileak [7, 10].

vT =
kTp
q is the thermal voltage andTp is a scalar representing the

temperature at one place,1 K and η are process related parameters,
and Vth is the threshold voltage. Apparently, the leakage power
has a complex nonlinear relationship with temperature.

In order to see the accuracy of the leakage power model given
in (1) and (2), Fig. 1 shows an HSPICE simulation result of leakage
using TSMC 65 nm process model and its curve fitting result using
approximate leakage model. From the figure, we can see that the
leakage power model (1), (2) has high accuracy for all common
temperatures of IC chips.

1T introduced latter in (3) is a vector representing temperatures at multiple positions.

2.2 Thermal management using model
predictive control

In order to use model predictive control (MPC), a thermal model
should be built first. For a l-core systemwithm total thermal nodes,
we can get its thermal model as [5, 15]

GT (t) +C
dT (t)

dt
= BP(T , t),

Y (t) = LT (t),
(3)

where T (t) ∈ Rm is the temperature vector (distinguished from
scaler Tp ), representing temperatures atm places of the chip and
package;G ∈ Rm×m andC ∈ Rm×m contain equivalent thermal re-

sistance and capacitance information respectively; B ∈ Rm×l con-

tains the power injection topology information; P(T , t) ∈ Rl is
the power vector of l cores, including both dynamic power vector

Pd (t) and leakage power vector Ps (T , t). Y (t) ∈ Rl is the output

temperatures of l cores; L ∈ Rl×m is the output selection matrix
which selects the l core temperatures from T (t).

In order to be used in computer, the thermal model (3) is dis-
cretized for a given time step h as [9]

T (k + 1) = AT (k) + DPd (k)

+

∫ h

0
e−(h−τ )C

−1GC−1BPs (T , τ ) dτ ,
(4)

with

A = e−hC
−1G
, D =

∫ h

0
e−(h−τ )C

−1GC−1B dτ ,

where k is the time in discrete form.2 Note that A ∈ Rm×m and
D ∈ Rm×l are constant matrices which are computed offline for a
given time step h [9].

By using thermal model (4), MPC calculates the future power
recommendation Pd in order to track a user defined temperature,
with the following steps.

First, at current time k , we denote the future dynamic power
trajectory (which is unknown and needs to be computed in the
end) into the futureNc steps (whereNc is called the control horizon
in MPC) as

Pd = [Pd (k)
T
, Pd (k + 1)

T
, . . . , Pd (k + Nc − 1)T ]T . (5)

Then, the prediction of core temperatures is written as

Y = [Y (k + 1)T ,Y (k + 2)T , . . . ,Y (k + Np )
T ]T , (6)

where Np is called the prediction horizon (with Np > Nc ) in MPC
and Y (k + j) is the predicted temperatures at time k + j using infor-
mation of current time k .

Corresponding to (6), the target temperature vector Yд ∈ Rl is
written in a vector trajectory as

Yд = [YTд ,Y
T
д , . . . ,Y

T
д ]T . (7)

The objective of the MPC is to bring the predicted output tem-
perature Y as close as possible to the target temperature Yд by
adjusting the dynamic power Pd , which is equivalent to minimiz-
ing the following cost function

J = (Yд −Y)T (Yд −Y) + PT
d RPd . (8)

2We use k to represent the discrete time, and t to represent the continuous time. k +1
is equivalent to t + h, with h as the discretization time step.
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Figure 3: The configuration of the 16-core chip used for the
experiment.
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,

with 0 as the zero matrix with suitable size.
Plugging (17) into (8), standard MPC optimization is performed

to minimize (8) by making the first derivative of (8) (with respect
to Pd ) equal to zero. The solution of Pd is

Pd = (VTV + R)−1VT (Yд − FT (k) − ϕ1P̂ − ϕ2P̂n ). (18)

At each MPC time k , only Pd (k) (the first element of Pd ) will
be outputted as the power recommendation for thermal manage-
ment. Frequencies and task loads of the multi-core system will be
adjusted according to Pd (k). How to perform the management ac-
tions based on future power recommendation is presented in many
DTM works such as [13], which will not be given here due to page
limitation.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the new leakage-
aware DTM method.

4.1 Experiment setup
The experiment is performed on a 16-core system plant with its
chip configuration shown in Fig. 3. We place one thermal sensor
for each core, which provides on-chip temperature information for
the DTM. The ambient temperature is 40 ◦C, and the target temper-
ature in DTM is 80 ◦C. We set the operating temperature range for
the rising case as from 40 ◦C to 80 ◦C, and the range for the falling
case as from 120 ◦C to 80 ◦C. All the experiments are performed on
a PC with an Intel Core i5-2400 CPU and 4 GB memory.

Power estimator Wattch [2] is used to generate the dynamic
power by running the standard SPEC benchmarks. The different
power traces from SPEC benchmarks are randomly assigned to dif-
ferent cores of the multi-core system. The golden leakage power
of the multi-core system plant is obtained by using the iteration
based leakage-aware thermal simulation method with simulation
step 1ms to ensure accuracy. The control step of DTM is set as 1 s.

In order to show the advantage of the new DTM method with
PWL model based predictive control (we call it the new DTM), we

compare it with the traditional DTM method with linear model
based MPC [13] (called the traditional DTM). The traditional DTM
shares the same settings as the new DTM except that its only Tay-
lor expansion point is set at the target temperature (80 ◦C).

4.2 Performance evaluation of leakage-aware
DTM with PWL model based predictive
control

We apply both the new DTM and traditional DTM, and record the
management performance results in Table 1. In order to see the
accuracy of the new DTM with different configurations, we test it
with different expansion point number, prediction horizon length
Np , and control horizon length Nc .

We mainly focus on two DTM performances in the comparison.
The first is the temperature tracking difference between the actual
plant temperature and the target temperature, which indicates the
effectiveness and accuracy of the DTM. The second is the overhead
(computing time and memory cost) of the DTM, with respect to
different numbers of expansion points as well as different Np and
Nc .

For traditional DTM, the difference between the actual temper-
ature and the target temperature is large for all cases as shown in
Table 1. Even for the best case (Nc = 1, Np = 2), the average dif-
ference is over 1.3 ◦C and the maximum difference is around 6 ◦C.
This is because the linear model cannot approximate the nonlin-
earity in leakage power accurately.

On the contrary, for the newDTM, the temperature tracking dif-
ference is much smaller than the traditional DTM for all cases. The
tracking accuracy improvement is achieved by approximating the
nonlinearity accurately using the PWL thermal model. Especially,
the average tracking difference is only 0.72 ◦C when the number
of expansion points is 11.

On the runtime side, we observe that the computing time of the
new DTM is only a little higher than that of the traditional method,
because the new DTM has one more term (ϕ1) than the traditional
DTM. But still, the new DTM is extremely fast, with only less than
1.2ms computing time for each 1 s control step. Since the compu-
tation is performed on one core out of the 16 cores, this overhead
only leads to around 0.01% system throughput degradation.

Memory cost of the new DTM is higher than traditional DTM,
which also increases linearly with the expansion point number as
shown in Table 1. This is because more matrices computed offline
need to be stored, such as the PWL thermal model matrices F and
ϕ1. It is the major trade-off between accuracy and overhead in the
new DTM. For practical usage, engineers need to balance the ac-
curacy and memory cost by choosing the proper Taylor expansion
point number.

Finally, we plot the transient plant temperature comparison re-
sults in Fig. 4 by activating both DTMs at 1 s. We only plot the
results of core C32 due to page limitation. It is observed that the
temperature controlled by traditional DTM shows large tracking
overshot especially when the current temperature is far from tar-
get (from 1 s to 2 s). On the other hand, the temperature controlled
by the new DTM tracks the target accurately. This clearly demon-
strates the advantage of the new DTM in thermal management
quality.
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Figure 3: The configuration of the 16-core chip used for the
experiment.
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with 0 as the zero matrix with suitable size.
Plugging (17) into (8), standard MPC optimization is performed

to minimize (8) by making the first derivative of (8) (with respect
to Pd ) equal to zero. The solution of Pd is

Pd = (VTV + R)−1VT (Yд − FT (k) − ϕ1P̂ − ϕ2P̂n ). (18)

At each MPC time k , only Pd (k) (the first element of Pd ) will
be outputted as the power recommendation for thermal manage-
ment. Frequencies and task loads of the multi-core system will be
adjusted according to Pd (k). How to perform the management ac-
tions based on future power recommendation is presented in many
DTM works such as [13], which will not be given here due to page
limitation.

4 EXPERIMENTAL RESULTS AND
DISCUSSIONS

In this section, we evaluate the performance of the new leakage-
aware DTM method.

4.1 Experiment setup
The experiment is performed on a 16-core system plant with its
chip configuration shown in Fig. 3. We place one thermal sensor
for each core, which provides on-chip temperature information for
the DTM. The ambient temperature is 40 ◦C, and the target temper-
ature in DTM is 80 ◦C. We set the operating temperature range for
the rising case as from 40 ◦C to 80 ◦C, and the range for the falling
case as from 120 ◦C to 80 ◦C. All the experiments are performed on
a PC with an Intel Core i5-2400 CPU and 4 GB memory.

Power estimator Wattch [2] is used to generate the dynamic
power by running the standard SPEC benchmarks. The different
power traces from SPEC benchmarks are randomly assigned to dif-
ferent cores of the multi-core system. The golden leakage power
of the multi-core system plant is obtained by using the iteration
based leakage-aware thermal simulation method with simulation
step 1ms to ensure accuracy. The control step of DTM is set as 1 s.

In order to show the advantage of the new DTM method with
PWL model based predictive control (we call it the new DTM), we

compare it with the traditional DTM method with linear model
based MPC [13] (called the traditional DTM). The traditional DTM
shares the same settings as the new DTM except that its only Tay-
lor expansion point is set at the target temperature (80 ◦C).

4.2 Performance evaluation of leakage-aware
DTM with PWL model based predictive
control

We apply both the new DTM and traditional DTM, and record the
management performance results in Table 1. In order to see the
accuracy of the new DTM with different configurations, we test it
with different expansion point number, prediction horizon length
Np , and control horizon length Nc .

We mainly focus on two DTM performances in the comparison.
The first is the temperature tracking difference between the actual
plant temperature and the target temperature, which indicates the
effectiveness and accuracy of the DTM. The second is the overhead
(computing time and memory cost) of the DTM, with respect to
different numbers of expansion points as well as different Np and
Nc .

For traditional DTM, the difference between the actual temper-
ature and the target temperature is large for all cases as shown in
Table 1. Even for the best case (Nc = 1, Np = 2), the average dif-
ference is over 1.3 ◦C and the maximum difference is around 6 ◦C.
This is because the linear model cannot approximate the nonlin-
earity in leakage power accurately.

On the contrary, for the newDTM, the temperature tracking dif-
ference is much smaller than the traditional DTM for all cases. The
tracking accuracy improvement is achieved by approximating the
nonlinearity accurately using the PWL thermal model. Especially,
the average tracking difference is only 0.72 ◦C when the number
of expansion points is 11.

On the runtime side, we observe that the computing time of the
new DTM is only a little higher than that of the traditional method,
because the new DTM has one more term (ϕ1) than the traditional
DTM. But still, the new DTM is extremely fast, with only less than
1.2ms computing time for each 1 s control step. Since the compu-
tation is performed on one core out of the 16 cores, this overhead
only leads to around 0.01% system throughput degradation.

Memory cost of the new DTM is higher than traditional DTM,
which also increases linearly with the expansion point number as
shown in Table 1. This is because more matrices computed offline
need to be stored, such as the PWL thermal model matrices F and
ϕ1. It is the major trade-off between accuracy and overhead in the
new DTM. For practical usage, engineers need to balance the ac-
curacy and memory cost by choosing the proper Taylor expansion
point number.

Finally, we plot the transient plant temperature comparison re-
sults in Fig. 4 by activating both DTMs at 1 s. We only plot the
results of core C32 due to page limitation. It is observed that the
temperature controlled by traditional DTM shows large tracking
overshot especially when the current temperature is far from tar-
get (from 1 s to 2 s). On the other hand, the temperature controlled
by the new DTM tracks the target accurately. This clearly demon-
strates the advantage of the new DTM in thermal management
quality.



Performance comparison

• Tracking difference: much smaller
• Computing time: similar to traditional
• Memory cost: increases linearly with expansion point number

Hint: balance accuracy and memory cost with proper expansion 
point number
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Table 1: Computing time (time), storage memory (mem), and tracking difference (difference) comparison results of the tradi-
tional DTM and new DTM. Computing time is recorded as the average computing time for each thermal management action
(every 1 s). The tracking difference is in ◦C.

Nc = 1,Np = 1 Nc = 1,Np = 2 Nc = 1,Np = 3 Nc = 2,Np = 3
Methods time mem difference time mem difference time mem difference time mem difference

(ms) (KB) max avg (ms) (KB) max avg (ms) (KB) max avg (ms) (KB) max avg

Traditional 1.01 7 6.02 1.35 1.13 13 5.97 1.32 1.22 21 5.86 1.34 1.30 23 5.94 1.37

New (3 points) 1.12 14 1.25 0.84 1.28 23 1.20 0.81 1.39 42 1.21 0.82 1.46 44 1.23 0.85

New (5 points) 1.12 22 1.21 0.79 1.28 36 1.16 0.78 1.39 65 1.18 0.80 1.47 67 1.20 0.82

New (7 points) 1.13 32 1.15 0.77 1.29 51 1.12 0.75 1.40 91 1.09 0.76 1.47 94 1.13 0.79

New (11 points) 1.14 58 1.08 0.75 1.30 90 1.05 0.72 1.42 150 1.11 0.74 1.49 154 1.09 0.75
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Figure 4: The transient temperatures of C32 using the new
DTM (with 5 expansion points) and traditional DTM. Both
methods have NP = 2 and Nc = 1. The temperature target is
set as 80 ◦C. Both DTM methods are activated at 1 s.

In summary, experimental results show that the new DTM out-
performs the traditional DTM in thermalmanagement qualitywith
negligible computing overhead. Trade-off between accuracy and
memory cost of the new DTM can be made by adjusting the Tay-
lor expansion point number.

5 CONCLUSION
In this paper, we have proposed a new leakage-aware DTMmethod
for multi-core systems using PWL model based predictive control.
We built a PWL thermal model by combining multiple local lin-
ear thermal models expanded at several Taylor expansion points.
These expansion points are selected by a systematic scheme which
exploits the thermal behavior property of the IC chips. Based on
the PWL thermal model, predictive control is used to find the opti-
mal future power recommendations for thermal management. Ex-
perimental results show the new method outperforms the linear
model basedMPCmethod in temperaturemanagement qualitywith
negligible computing overhead.

ACKNOWLEDGMENTS
This research is supported in part byNational Natural Science Foun-
dation of China under grant No. 61404024, in part by the Funda-
mental Research Funds for the Central Universities under grant

No. ZYGX2016J043, in part by the Scientific Research Foundation
for the Returned Overseas Chinese Scholars, State Education Min-
istry.

REFERENCES
[1] Stephen Boyd and Lieven Vandenberghe. 2006. Convex Optimization. Cambridge

University Press.
[2] David Brooks, Vivek Tiwari, and Margaret Martonosi. 2000. Wattch: A Frame-

work for Architectural-Level Power Analysis and Optimizations. In Proc. Int.
Symp. on Computer Architecture (ISCA). 83–94.

[3] Vivek Chaturvedi, Huang Huang, and Gang Quan. 2010. Leakage Aware Sched-
uling on Maximum Temperature Minimization for Periodic Hard Real-Time Sys-
tems. In IEEE International Conference on Computer and Information Technology.
1802–1809.

[4] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2012. Dark silicon and the end of multicore scaling. IEEE
MICRO 32, 3 (May 2012), 122–134.

[5] Vinay Hanumaiah, Sarma Vrudhula, and Karam Chatha. 2011. Performance opti-
mal online DVFS and task migration techniques for thermally constrained multi-
core processors. IEEE Trans. on Computer-Aided Design of Integrated Circuits and
Systems 30, 11 (November 2011), 1677–1690.

[6] John L Hennessy and David A Patterson. 2012. Computer Architecture: A Quan-
titative Approach, Fifth Edition. Elsevier.

[7] Yongpan Liu, Robert Dick, Li Shang, and Huazhong Yang. 2007. Accurate
Temperature-Dependent Integrated Circuit Leakage Power Estimation is Easy.
In Proc. European Design and Test Conf. (DATE). 1–6.

[8] Zao Liu, Sheldon X.-D. Tan, Xin Huang, and Hai Wang. 2015. Task migrations
for distributed thermal management considering transient effects. IEEE Trans.
on Very Large Scale Integration (VLSI) Systems 23, 2 (Feb. 2015), 397–401.

[9] Efraim Rotem, Alon Naveh, Doron Rajwan, Avinash Ananthakrishnan, and
Eliezer Weissmann. 2007. TILTS: A Fast Architectural-Level Transient Thermal
Simulation Method. Journal of Low Power Electronics 3, 1 (April 2007), 13–21.

[10] Ruijing Shen, Sheldon X.-D. Tan, Hai Wang, and Jinjun Xiong. 2012. Fast Statis-
tical Full-Chip Leakage Analysis for Nanometer VLSI Systems. ACM Trans. on
Design Automation of Electronics Systems 17, 4 (October 2012), 51:1–51:19.

[11] Bing Shi and Ankur Srivastava. 2015. Dynamic Thermal Management Consid-
ering Accurate Temperature-Leakage Interdependency. In ENCYCLOPEDIA OF
THERMAL PACKAGING: Thermal Packaging Tools. World Scientific, 39–60.

[12] Cheng Tan, Thannirmalai Muthukaruppan, Tulika Mitra, and Lei Ju. 2015.
Approximation-Aware Scheduling on Heterogeneous Multi-core Architectures.
In Proc. Asia South Pacific Design Automation Conf. (ASP-DAC). 618–623.

[13] HaiWang, Jian Ma, Sheldon X.-D. Tan, Chi Zhang, He Tang, Keheng Huang, and
Zhenghong Zhang. 2016. Hierarchical Dynamic Thermal Management Method
for High-Performance Many-Core Microprocessors. ACM Trans. on Design Au-
tomation of Electronics Systems 22, 1 (July 2016), 1:1–1:21.

[14] Hai Wang, Sheldon X.-D. Tan, Xue-Xin Liu, and Ashish Gupta. 2012. Runtime
power estimator calibration for high-performance microprocessors. In Proc. Eu-
ropean Design and Test Conf. (DATE). 352–357.

[15] Hai Wang, Jiachun Wan, Sheldon X.-D. Tan, Chi Zhang, He Tang, Yuan Yuan,
Keheng Huang, and Zhenghong Zhang. 2018. A Fast Leakage-Aware Full-Chip
Transient Thermal Estimation Method. IEEE Trans. on Computers 67, 5 (May
2018), 617–630.

[16] LiupingWang. 2009. Model Predictive Control System Design and Implementation
Using MATLAB. Springer.



Control quality comparison
• 5 expansion points
• Both DTM methods activated at 1s, target temperature

• Traditional DTM shows large tracking overshot.
• New method has extremely smooth control with little overshot.

ASP-DAC 2019, Jan. 2019, Tokyo, Japan X. Guo et al.

Table 1: Computing time (time), storage memory (mem), and tracking difference (difference) comparison results of the tradi-
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Figure 4: The transient temperatures of C32 using the new
DTM (with 5 expansion points) and traditional DTM. Both
methods have NP = 2 and Nc = 1. The temperature target is
set as 80 ◦C. Both DTM methods are activated at 1 s.

In summary, experimental results show that the new DTM out-
performs the traditional DTM in thermalmanagement qualitywith
negligible computing overhead. Trade-off between accuracy and
memory cost of the new DTM can be made by adjusting the Tay-
lor expansion point number.

5 CONCLUSION
In this paper, we have proposed a new leakage-aware DTMmethod
for multi-core systems using PWL model based predictive control.
We built a PWL thermal model by combining multiple local lin-
ear thermal models expanded at several Taylor expansion points.
These expansion points are selected by a systematic scheme which
exploits the thermal behavior property of the IC chips. Based on
the PWL thermal model, predictive control is used to find the opti-
mal future power recommendations for thermal management. Ex-
perimental results show the new method outperforms the linear
model basedMPCmethod in temperaturemanagement qualitywith
negligible computing overhead.
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Conclusion
l A PWL model predictive control based DTM method is 

proposed.
l The PWL thermal model is concise and can be integrated into 

the predictive control elegantly.
l A systematic expansion point selection scheme is developed for 

PWL models.
l We show how to integrate the new PWL thermal model into 

the predictive control framework.
l The new method outperforms traditional method in control 

quality.
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