#### Multi-Angle Bended Heat Pipe Design Using X-Architecture Routing with Dynamic Thermal Weight on Mobile Devices

Hsuan-Hsuan Hsiao<sup>1</sup>, <u>Hong-Wen Chiou<sup>123</sup></u>, Yu-Min Lee<sup>12</sup>

<sup>1</sup>National Chiao Tung University, Taiwan
<sup>2</sup>Center for mmWave Smart Radar Systems and Technologies, National Chiao Tung University, Taiwan
<sup>3</sup>Industrial Technology Research Institute, Taiwan







IIRI Industrial Technology Research Institute

# Outline

- Introduction
- Thermal simulation on smartphone with heat pipe
- XHPR: X-architecture thermal driven heat pipe routing engine
- Experimental results
- Conclusions



# Motivation (1/3)

- The application processor (AP) in high-end smartphones is overheated
  - High performance
  - Die shrink

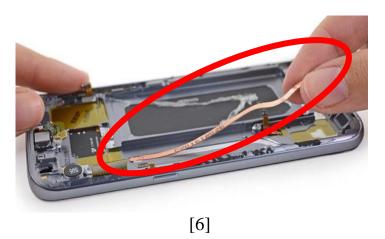


2016 Lumia 950 XL 
 HTC One M9 [1]

- Why consider thermal issues on smartphones ?
  - Decreasing carrier mobility slows down the device and degrades the performance of die
  - High skin/screen temperature cause the thermal burn






## Motivation (2/3)

- Thermal solutions for smartphones
  - Graphite sheet
  - Metal back cover
  - Heat pipe











## Motivation (3/3)

- Why heat pipe is suitable for smartphones?
  - High thermal conductivity (1000~100000 W/(m·K)) [7]
  - Light
  - Cheaper (USD\$ 1.5) [8]
- The smartphones in industry





There are still few discussions about automatic heat pipe routing design tools

# Heat Transfer Equation

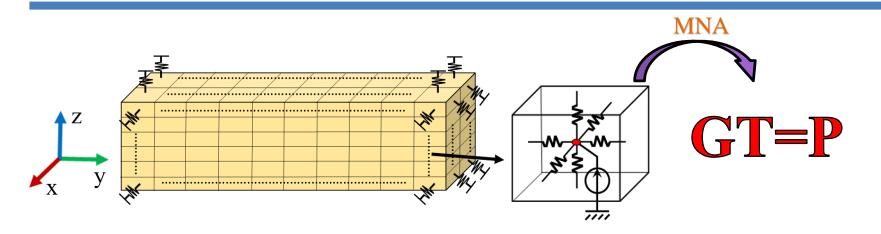
• Heat transfer equation for steady state

$$\nabla \cdot \left( \boldsymbol{\kappa}(\mathbf{r}) \nabla T(\mathbf{r}) \right) = p(\mathbf{r})$$

The total heat transferring out of the control volume

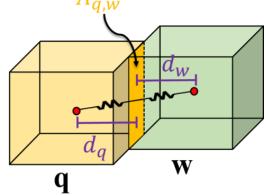
Heat generation in the control volume

• Boundary condition


$$\boldsymbol{\kappa}(\mathbf{r}_{\mathrm{b}}) \frac{\partial T(\mathbf{r}_{\mathrm{b}})}{\partial \overrightarrow{n_{\mathrm{b}}}} + h_{\mathrm{b}} T(\mathbf{r}_{\mathrm{b}}) = f_{\mathrm{b}}(\mathbf{r}_{\mathrm{b}})$$

Heat transfer equation is partial differential equation It is difficult to be solved

Finite difference method

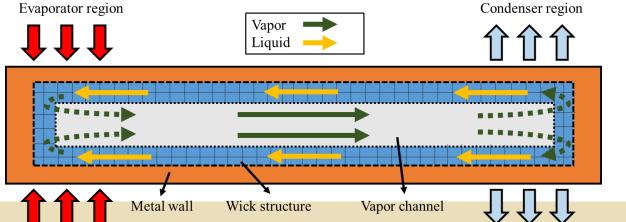

- **r**: Arbitrary position  $\kappa$ : Thermal conductivity *T*: Temperature *p*: Heat generation **r**<sub>b</sub>: Arbitrary position in boundary  $\overrightarrow{n_b}$ : Outward normal to boundary
- $h_{\rm b}$ : Heat transfer coefficient on boundary

## **Compact Thermal Model**



• Thermal resistance between two adjacent grids  $\mathbf{q}$  and  $\mathbf{w}$  [12]  $A_{q,w}$ 

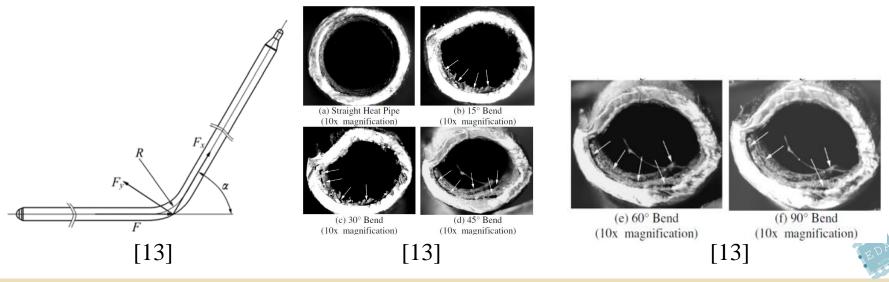
$$r(q,w) = \frac{1}{A_{q,w}} \left(\frac{d_q}{k_q} + \frac{d_w}{k_w}\right)$$




• Boundary thermal resistance

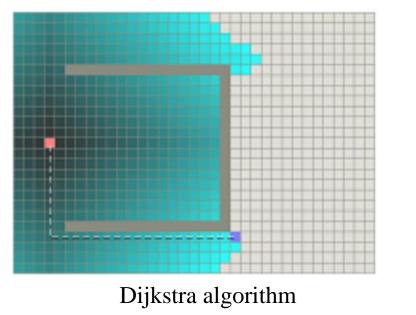


# Heat Pipe Cooling Technique (1/2)

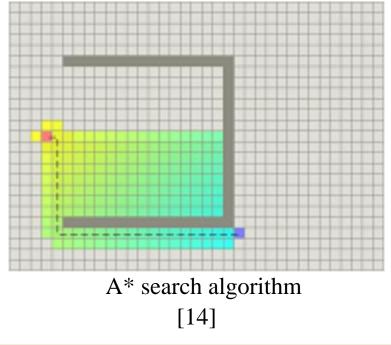

- What is heat pipe?
  - A two-phase heat transfer device that has the good ability to transmit heat
- Principle of heat pipe
  - The working fluid evaporates by heat absorption in hot region
  - Vapor travels to the cold region
  - Vapor condenses into fluid by dissipating heat in cold region and flows back through wick structure





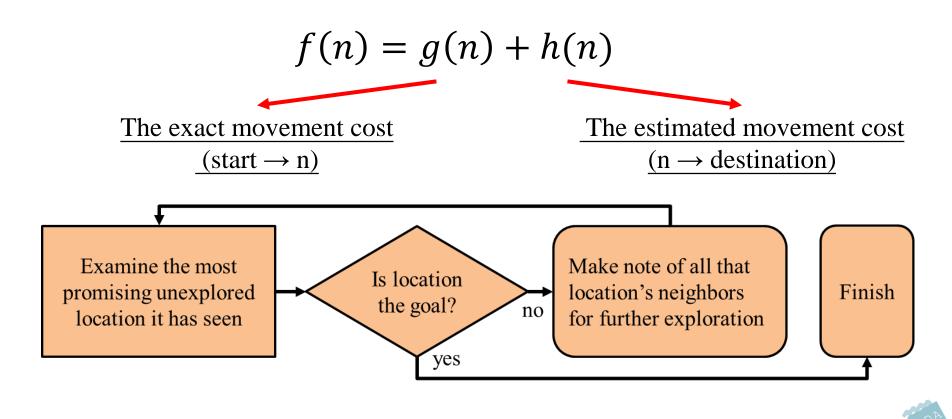

# Heat Pipe Cooling Technique (2/2)

- Why do we need multiple angle bended heat pipes?
  - Smartphone's structure
  - The thermal resistance increases with increasing the bending angle [13]
    - 1. Reduction in the vapor core
    - 2. Disruption in the path of liquid flowing back to the evaporator



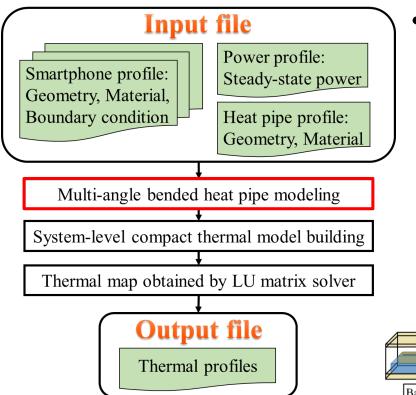

# A\* Search Algorithm(1/2)

- An effective pathfinding algorithm that finds the least cost path from source to sink
  - Be extended from the Dijkstra algorithm
  - Apply heuristic estimation to improve searching quality

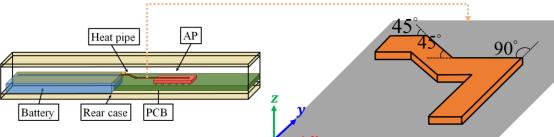



[14]



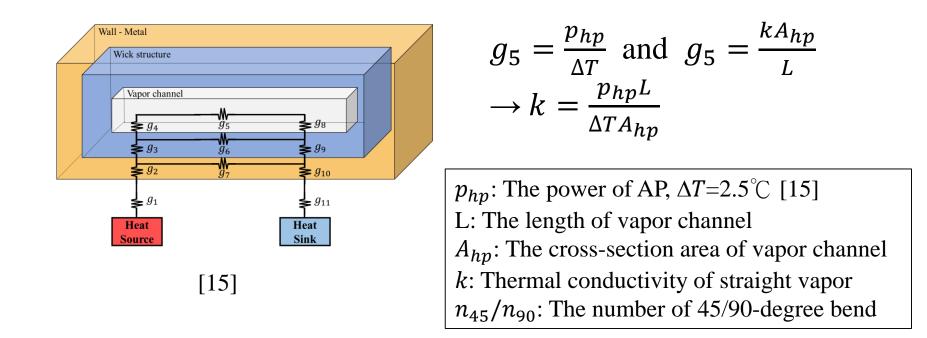

## A\* Search Algorithm(2/2)

- The mechanism of A\* algorithm
  - The evaluation function decides the promising grid






#### Thermal Simulation on Smartphone with Heat Pipe <u>Thermal Simulation Flow</u>

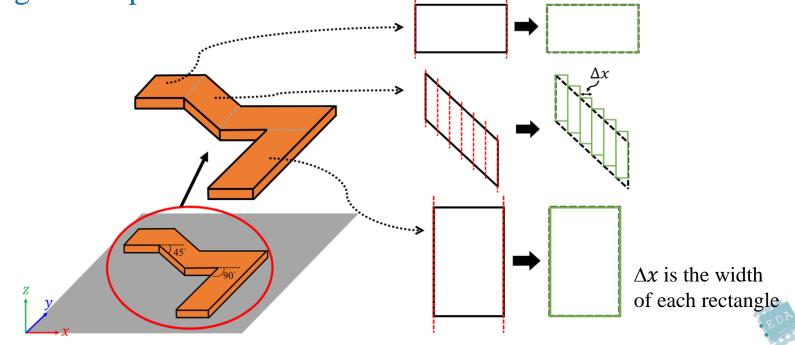



- Multi-angle bended heat pipe modeling
  - Heat pipe effective thermal conductivity
  - Cuboids approximation for bended heat pipe structure





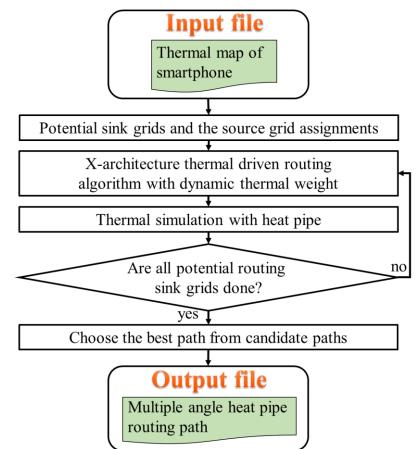
#### Thermal Simulation on Smartphone with Heat Pipe <u>Heat Pipe Effective Thermal Conductivity</u>




• Degrading rate are 86% and 80% of 45-degree bend and 90degree bend, respectively [13]  $k_{vapor,45/90} = \frac{p_{hp}L}{\Delta T A_{hn}} * 0.86^{n_{45}} * 0.8^{n_{90}}$ 



#### Thermal Simulation on Smartphone with Heat Pipe <u>Cuboids Approximation for Bended Heat Pipe Structure</u>


- Integrate the developed compact thermal model of multi-angle bended heat pipe into the compact thermal model of system
  - Chop the heat pipe and use several cuboids to approximate its original shape



### XHPR Design Flow

#### • Goal

- Maximize the temperature reduction of AP by designing the 45/90-degree bended heat pipe path
- Overview
  - X-architecture thermal driven routing algorithm
  - Learning based dynamic thermal weight calculator
  - Thermal simulation of heat pipe





## Dynamic Thermal Weight Calculator

- Why do we need to build dynamic thermal weight function?
  - The phenomenon of two-phase heat transfer with heat pipe is difficult to estimate while routing heat pipe
    - 1. Bending angle
    - 2. Bending number
    - 3. Routing position
- We adopt a supervised machine learning method to build a dynamic thermal weight function



#### Dynamic Thermal Weight Calculator Machine Learning Framework

Heat pipe routing patterns with the bending numbers (0 to 3) and two bending angles (45 and 90 degrees) **Input file** Temp. Smartphone profile: Geometry, Material, Distance Boundary condition Model ANSYS Selection Label Fluent Power profile: Steady-state power Bending number Heat pipe patterns **Output file** 1<sup>yes</sup> Dynamic thermal Model Maximum error Model weight function for < threshold Testing Training heat pipe routing no

### Dynamic Thermal Weight Calculator Feature Variable List

- Obtain the thermal distribution of smartphones with heat pipe routing patterns
- Extract the feature variables that would cause some thermal effects from each grid in thermal map as our data
  - The <u>rising temperature</u> of source and sink of heat pipe
  - The <u>distance</u> between the grid and the source grid
  - The <u>label</u> whether the heat pipe passes the grid
  - The <u>bending number</u> of heat pipe in 45 or 90 degrees
  - The <u>rising temperature</u> of grid without employing the heat pipe cooling technique
  - The temperature reduction of each grid



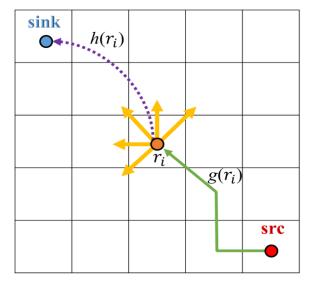
#### Dynamic Thermal Weight Calculator Learning Model Building

• 
$$y_p(\mathbf{x}, \mathbf{w}) = \sum_{\substack{k_1 + \cdots + k_7 \leq 6 \\ \forall k_i \in 0 \cup \mathbb{N}}} w_{k_1, \dots, k_7} \prod_{j=1}^7 x_j^{k_j}$$

We use six order multivariate polynomial function as our learning model

- $y_p(\mathbf{x}, \mathbf{w})$  is our predicted target value
- $-\mathbf{x} = (x_1, x_2, ..., x_7)^T$  is the vector of input variables
- $\mathbf{w} = (w_{0...0}, w_{1...0}, ..., w_{0...6})^T$  is the vector of function parameters
- Gaussian distribution assumption for data
  - $p(t|\mathbf{x}, \mathbf{w}, \beta) = N(t|y_p(\mathbf{x}, \mathbf{w}), \beta^{-1})$
  - -t is corresponding target value of **x**
  - $-\beta$  is the precision of distribution
- Using maximum likelihood function to determine  ${\bf w}$




### X-Architecture Thermal Driven Routing <u>Routing Algorithm Basic Introduction</u>

- X-architecture thermal driven routing is based on A\* algorithm
   The predicted process improves the result and searching quality
- X-architecture thermal driven routing manipulates the routing grids for finding the path has maximum total accumulated temperature reduction (accumulated heat)
- Definition of terms using in X-architecture thermal driven routing
  - expanded grid : The grid chose as promising grid
  - *neighbor grid* : The grid propagated from expanded grid
  - *openList* : A list of grids that has been propagated but not yet expanded
  - *closedList* : A list of grids which has been expanded



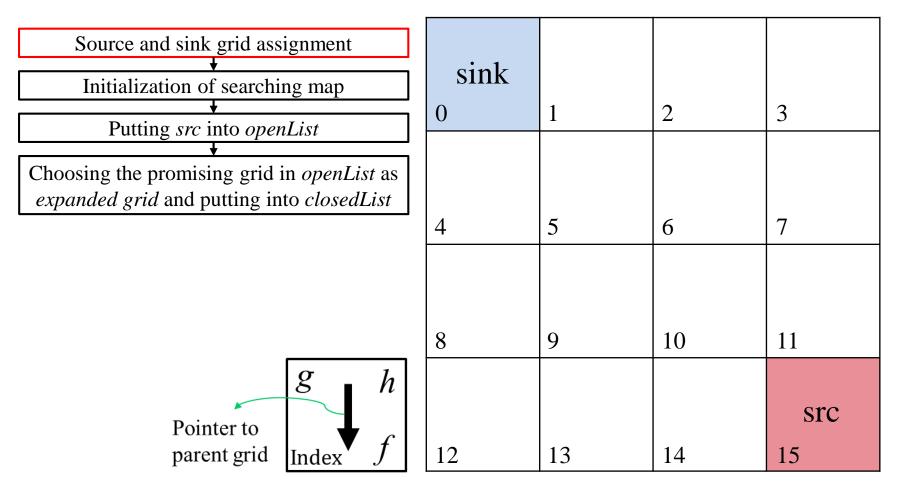
### X-Architecture Thermal Driven Routing <u>Path Scores Definition</u>

- Total accumulated temperature reduction from source to sink through the grid  $(r_i)$ is composed of
  - Accumulated temperature reduction from source to  $r_i$
  - Predicted accumulated temperature reduction from  $r_i$  to sink
  - $f(r_i) = g(r_i) + h(r_i)$
- Accumulated temperature reduction function  $g(r_i) = \sum_{i \in src \to r_i} y_p(j, \mathbf{x}, \mathbf{w})$
- Predicted accumulated temperature reduction function  $h(r_i) = \sum y_p(j.\mathbf{x}, \mathbf{w})$



 $y_p(j. \mathbf{x}, \mathbf{w})$ : The dynamic thermal weight function  $j. \mathbf{x}$ : The feature variable of grid j

 $src \rightarrow r_i$ : The searching path from the source grid to current grid  $r_i$ 


 $r_i \rightarrow sink$ : The predicted path from the current grid  $r_i$  to sink grid



### X-Architecture Thermal Driven Routing Basic Operation of Routing Algorithm

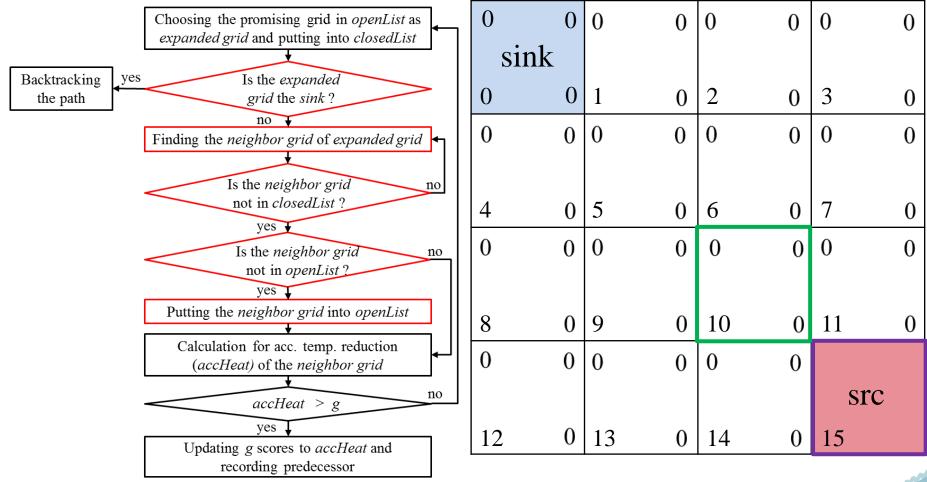
- 1. Choose the grid which has maximum *f* scores in *openList* as *expanded grid*
- 2. Move *expanded grid* from *openList* to *closedList*
- 3. Find the *neighbor grid* of *expanded grid* and check the condition of it
  - In *closedList*: skip following operations
  - In *openList*: calculate g scores
  - Otherwise: put it into *openList*, and calculate g scores
- 4. Update the *neighbor grid* if the current expanding is better than before
  - Update g scores
  - Execute the predicted process to get *h* scores
  - Calculate f scores



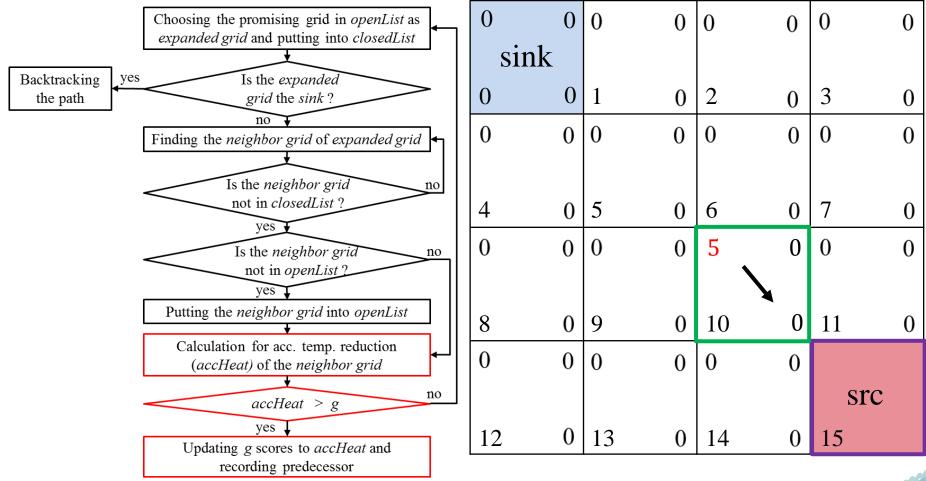




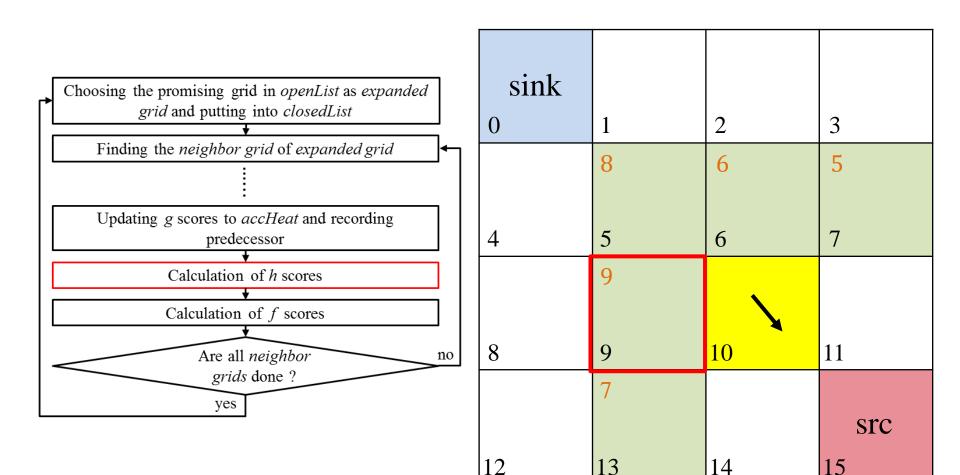
| Source and sink grid assignment                   | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|---------------------------------------------------|----|------|----|---|----|---|----------|----------|
| Initialization of searching map                   | S  | sink |    |   |    |   |          |          |
| Putting <i>src</i> into <i>openList</i>           | 0  | 0    | 1  | 0 | 2  | 0 | 3        | 0        |
| Choosing the promising grid in <i>openList</i> as | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
| expanded grid and putting into closedList         | 4  | 0    | 5  | 0 | 6  | 0 | 7        | 0        |
|                                                   | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|                                                   |    |      |    |   |    |   |          |          |
|                                                   | 8  | 0    | 9  | 0 | 10 | 0 | 11       | 0        |
|                                                   | 0  | 0    | 0  | 0 | 0  | 0 | $\infty$ | $\infty$ |
|                                                   |    |      |    |   |    |   |          | src      |
|                                                   | 12 | 0    | 13 | 0 | 14 | 0 | 15       | $\infty$ |



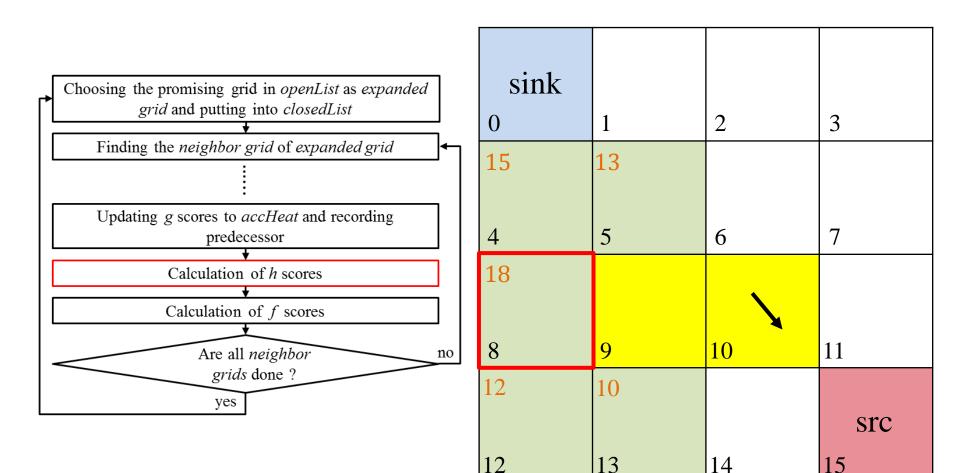

| Source and sink grid assignment                   | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|---------------------------------------------------|----|------|----|---|----|---|----------|----------|
| Initialization of searching map                   | S  | sink |    |   |    |   |          |          |
| Putting <i>src</i> into <i>openList</i>           | 0  | 0    | 1  | 0 | 2  | 0 | 3        | 0        |
| Choosing the promising grid in <i>openList</i> as | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
| expanded grid and putting into closedList         |    |      |    |   |    |   |          |          |
|                                                   | 4  | 0    | 5  | 0 | 6  | 0 | 7        | 0        |
|                                                   | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|                                                   |    |      |    |   |    |   |          |          |
|                                                   | 8  | 0    | 9  | 0 | 10 | 0 | 11       | 0        |
|                                                   | 0  | 0    | 0  | 0 | 0  | 0 | $\infty$ | $\infty$ |
|                                                   |    |      |    |   |    |   |          | src      |
|                                                   | 12 | 0    | 13 | 0 | 14 | 0 | 15       | $\infty$ |



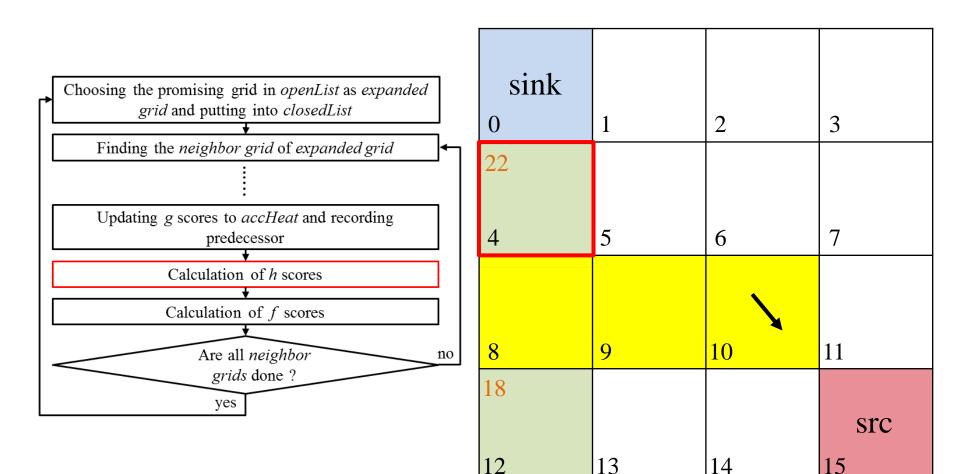

| Source and sink grid assignment                                                                           | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|-----------------------------------------------------------------------------------------------------------|----|------|----|---|----|---|----------|----------|
| Initialization of searching map                                                                           | 5  | sink |    |   |    |   |          |          |
| Putting <i>src</i> into <i>openList</i>                                                                   | 0  | 0    | 1  | 0 | 2  | 0 | 3        | 0        |
|                                                                                                           | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
| Choosing the promising grid in <i>openList</i> as <i>expanded grid</i> and putting into <i>closedList</i> |    |      |    |   |    |   |          |          |
|                                                                                                           | 4  | 0    | 5  | 0 | 6  | 0 | 7        | 0        |
|                                                                                                           | 0  | 0    | 0  | 0 | 0  | 0 | 0        | 0        |
|                                                                                                           |    |      |    |   |    |   |          |          |
|                                                                                                           | 8  | 0    | 9  | 0 | 10 | 0 | 11       | 0        |
|                                                                                                           | 0  | 0    | 0  | 0 | 0  | 0 | $\infty$ | $\infty$ |
|                                                                                                           |    |      |    |   |    |   |          | src      |
|                                                                                                           | 12 | 0    | 13 | 0 | 14 | 0 | 15       | $\infty$ |



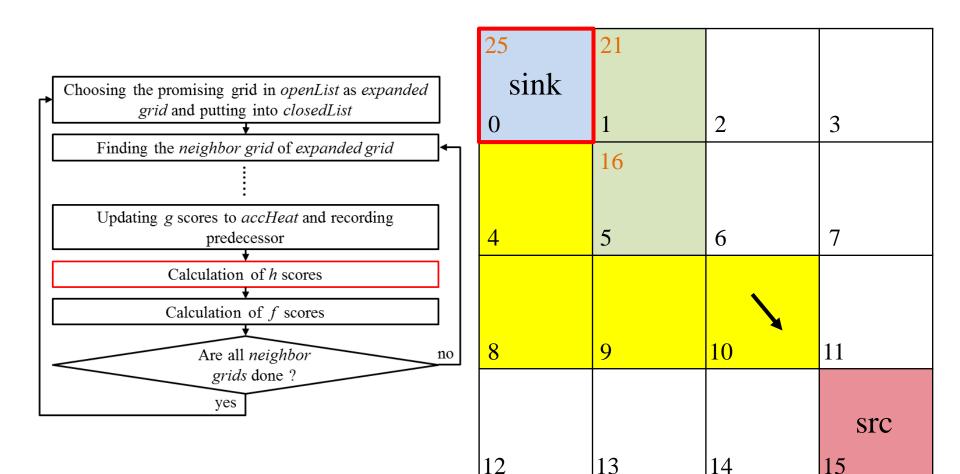


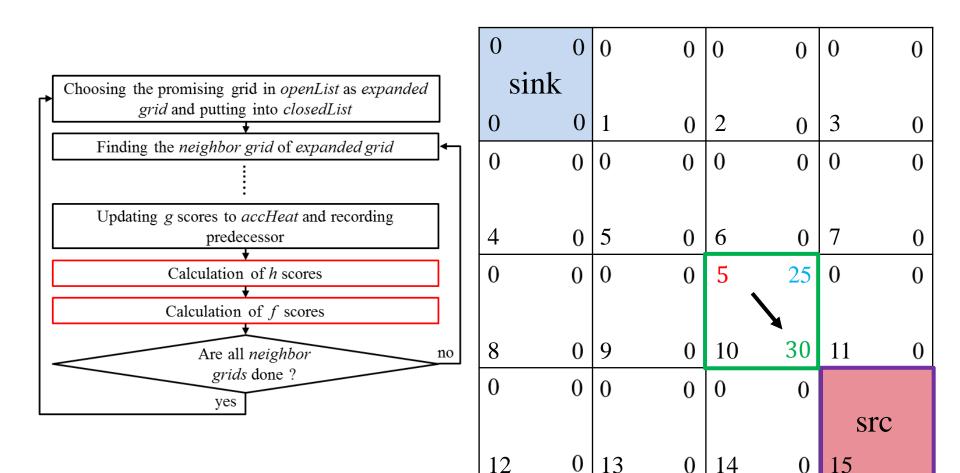


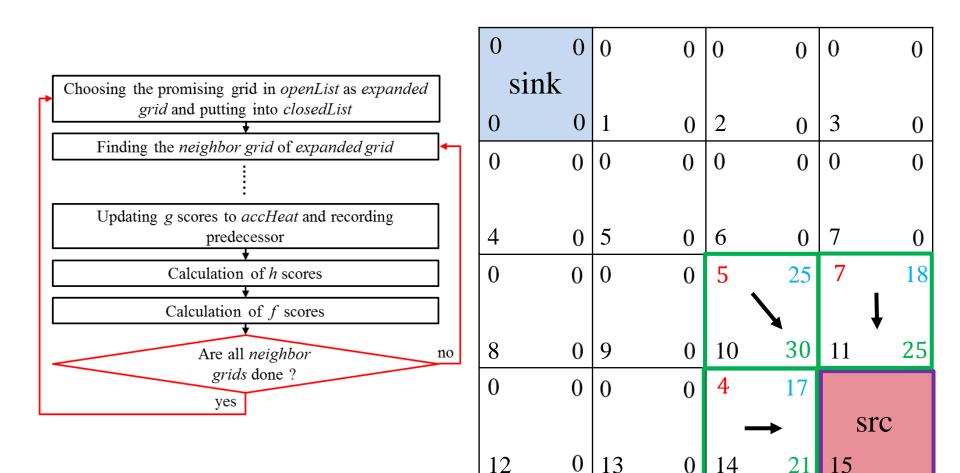


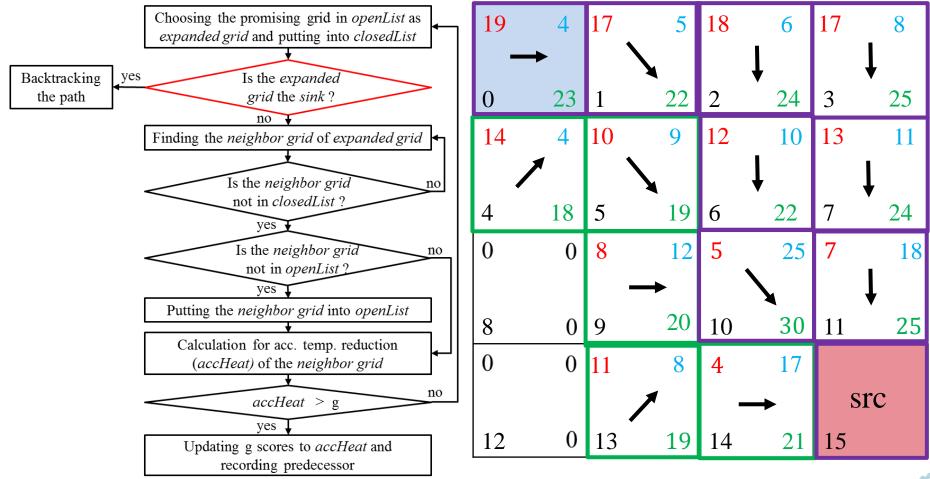


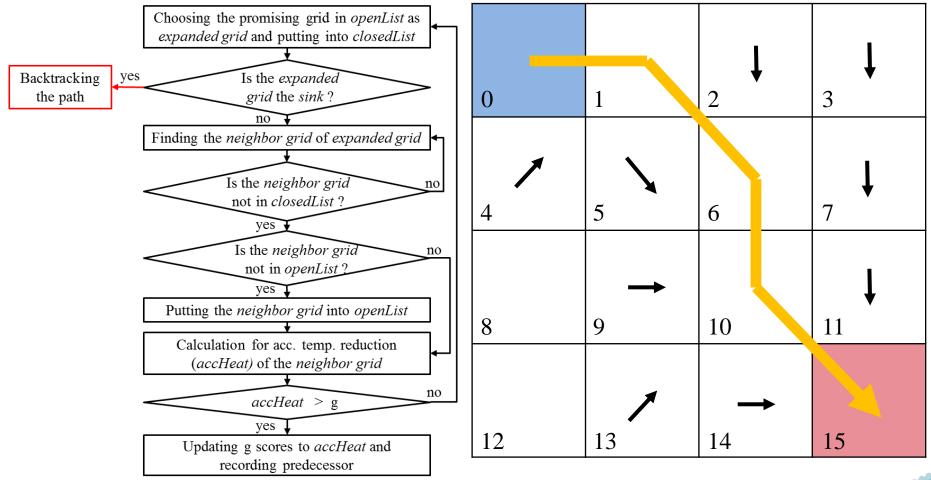




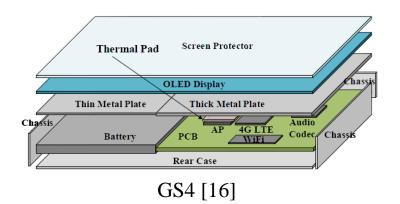






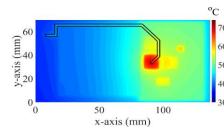


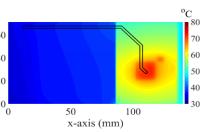





Experimental Results Environmental Settings


- Program language: C++
- Personal computer (PC)
  - RAM: 16G
  - CPU: Intel (R) Core (TM) i7-2600 CPU @3.40GHz
- Experimental target
  - Samsung Galaxy 4 (GS4)
  - Google Nexus 5 (N5)
- Case of power profile, C1-C5 [16]












# **Experimental Results** <sup>50</sup> Pipe Thermal Model Valid



|        |                              | Fluent  |      |           |         |         |        |
|--------|------------------------------|---------|------|-----------|---------|---------|--------|
| Case   | Bends                        | Runtime |      | Error (%) | Runtime | SpeedUp |        |
|        |                              | (s)     | AP   | Sk        | Sc      | (s)     | (X)    |
| GS4-C1 |                              | 1875.00 | 3.95 | 8.07      | 7.96    | 4.73    | 396.41 |
| GS4-C2 | 5                            | 1825.00 | 3.78 | 9.58      | 12.03   | 4.37    | 417.62 |
| GS4-C3 | 45-degree: 3                 | 1763.00 | 3.66 | 10.05     | 10.96   | 4.34    | 406.22 |
| GS4-C4 | 90-degree: 2                 | 1690.00 | 2.47 | 8.80      | 12.67   | 4.30    | 393.02 |
| GS4-C5 |                              | 1669.00 | 3.34 | 10.85     | 12.06   | 4.30    | 388.14 |
| N5-C1  |                              | 1834.00 | 4.79 | 6.43      | 13.58   | 4.80    | 382.08 |
| N5-C2  | 3                            | 1769.00 | 4.61 | 6.04      | 12.80   | 5.01    | 353.09 |
| N5-C3  | 45-degree: 3<br>90-degree: 0 | 1644.00 | 4.43 | 5.68      | 12.67   | 4.86    | 338.27 |
| N5-C4  |                              | 1782.00 | 4.36 | 5.62      | 11.49   | 5.72    | 311.54 |
| N5-C5  |                              | 1673.00 | 4.45 | 5.58      | 12.42   | 4.83    | 346.38 |

Maximum error: 4.79%, 10.85%, and 13.58% (AP, skin, screen) Speedup is with two order of magnitude  $(311 \times)$ 

GS4: Samsung Galaxy 4; N5: Google Nexus 5

The results are with the temperature of center application processor (AP), and maximum temperature of skin (Sk), and screen (Sc)



#### **Experimental Results**

#### Temperature Reduction with Heat Pipe Designs

|        |                            | SP-A* |      | I-MR-D |      |      |      | XHPR |      | Exhausted method |       |       |
|--------|----------------------------|-------|------|--------|------|------|------|------|------|------------------|-------|-------|
| Case   | Temperature reduction (°C) |       |      |        |      |      |      |      |      |                  |       |       |
|        | AP                         | Sk    | Sc   | AP     | Sk   | Sc   | AP   | Sk   | Sc   | AP               | Sk    | Sc    |
| GS4-C1 | 2.94                       | 1.36  | 1.29 | 5.09   | 2.83 | 3.32 | 6.16 | 4.97 | 4.33 | 66.73            | 39.66 | 38.86 |
| GS4-C2 | 1.88                       | 3.66  | 3.39 | 5.67   | 5.99 | 4.82 | 6.17 | 7.37 | 6.18 | 62.59            | 36.83 | 35.32 |
| GS4-C3 | 1.03                       | 2.03  | 1.47 | 3.55   | 2.87 | 3.20 | 6.29 | 4.60 | 6.85 | 59.97            | 35.30 | 34.67 |
| GS4-C4 | 1.14                       | 1.11  | 1.31 | 3.17   | 2.80 | 5.17 | 6.17 | 5.47 | 7.72 | 60.10            | 37.18 | 33.44 |
| GS4-C5 | 1.14                       | 0.82  | 2.15 | 4.33   | 3.45 | 4.84 | 5.10 | 4.89 | 7.19 | 59.10            | 36.30 | 33.56 |
| N5-C1  | 2.57                       | 1.18  | 0.64 | 5.53   | 3.05 | 2.38 | 7.34 | 3.59 | 2.60 | 69.61            | 60.67 | 48.38 |
| N5-C2  | 2.34                       | 1.09  | 0.59 | 5.24   | 2.81 | 2.23 | 6.70 | 3.28 | 2.38 | 65.92            | 58.21 | 46.65 |
| N5-C3  | 2.14                       | 0.99  | 0.54 | 4.82   | 2.59 | 2.06 | 6.16 | 3.02 | 2.19 | 62.85            | 56.16 | 45.21 |
| N5-C4  | 2.10                       | 0.98  | 0.52 | 4.73   | 2.55 | 2.02 | 6.05 | 2.97 | 2.15 | 62.23            | 55.75 | 44.92 |
| N5-C5  | 2.13                       | 0.99  | 0.54 | 4.80   | 2.58 | 2.05 | 6.13 | 3.01 | 2.18 | 62.63            | 56.32 | 45.17 |
| Avg.   | 1.94                       | 1.42  | 1.24 | 4.69   | 3.15 | 3.21 | 6.23 | 4.32 | 4.38 | 6.88             | 5.36  | 5.16  |

XHPR can reduce the temperature of AP at least 13.20% It shows that XHPR achieves the better cooling ability than others

SP-A\*: shortest path A\* routing algorithm [17]; I-MR-D: the 90-degree maze routing method in [18]; XHPR: X-architecture thermal driven routing; Exhausted method: [19]



#### Experimental Results Thermal Maps & Heat Pipe Routing Paths





## Conclusion

- In this work, we present
  - A compact thermal model of multi-angle bended heat pipe for accurate and fast thermal simulation
  - A developed X-architecture thermal driven routing algorithm for heat pipe deign
  - A thermal weight calculator using in the heat pipe routing stage to support heat pipe design
  - The proposed X-architecture thermal driven heat pipe routing engine can reduce the temperature at least 13.20% in application processors



## Reference

- [1] https://phandroid.com
- [2] http://t2online.com/tech
- [3] https://www.titan-cd.com
- [4] http:://www.alibaba.com
- [5] http://hottopic.chinatimes.com/20160426005570-260805
- [6] https://mashable.com
- [7] https://en.wikipedia.org/wiki/Heat\_pipe
- [8] http://technews.tw/2015/12/24/smart-phone-duct-heater-market/
- [9] https://www.neowin.net
- [10] https://www.lg.com/tw
- [11] https://wccftech.com
- [12] ISAC: Integrated Space-and-Time-Adaptive Chip-Package Thermal Analysis Yonghong Yang, Student Member, IEEE, Zhenyu (Peter) Gu, Student Member, IEEE, Changyun Zhu, Student Member, IEEE, Robert P. Dick, Member, IEEE, and Li Shang, Member, IEEE
- [13] L. L. Jiang, Y. Tang, and M. Q. Pan. Effects of bending on heat transfer performance of axial microgrooved heat pipe. Journal of Central South University of Technology, 18(2):580–586, 2011
- [14] http://truth.bahamut.com.tw/s01/201407/0a347bef88be0867a7489f860b9876b5.PNG
- [15] A. Faghri. Heat pipes: review, opportunities and challenges. Frontiers in Heat Pipes (FHP), 2014.
- [16] M. J. Dousti, M. Ghasemi-Gol, M. Nazemi, and M. Pedram, "ThermTap:An online power analyzer and thermal simulator for Android devices,"in Int. Symp. Low Power Electron. Des., pp. 341–346, 2015
- [17] S. T. Group, "Amit's A\* Pages." [Online]. Available: http://theory.stanford.edu/amitp/GameProgramming/AStarComparison.html, 2010.
- [18] H. W. Chiou, Y. M. Lee, H. H. Hsiao, and L. C. Cheng, "Thermal modeling and design on smartphones with heat pipe cooling technique," in Proc. Int. Conf. on Comput.- Aided Des., pp. 482–489, 2017.
- [19] EQV Martins and MMB Pascoal. A new implementation of yens ranking loopless pathsalgorithm. Quarterly Journal of the Belgian, French and Italian Operations ResearchSocieties, 1(2):121–133, 2003.

EDA 42./43

## **Thanks for listening** <sup>(2)</sup>

