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• Graph: represent data and their relationships
• Application: social network analysis, neural network modeling, 

user behavior analysis, brain network modeling …
• System & Architecture: support for graph-based applications

Graphs are widely used!
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Application I�PageRank
• Sorting billions of pages according 

to key words in one second
– Graph�2.9 b, 0.36 s
– PageRank�0.2 b, 0.30 s

• Google PageRank Algorithm
– The rank of a page depends on ranks 

of pages which link to it

• Network = Graph

5
Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.
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Application II�Film Recommendation

• Collaborative filtering based on similar users

• ALS�Alternating Least Squares
– Minimize Mean Square Error (MSE)

• Calculating using tags
• Recommending using non-tags

• Sparse matrix = Graph

6
Low, Yucheng, et al. "Distributed GraphLab: a framework for machine learning and data mining in the cloud." Proceedings of the VLDB Endowment 5.8 (2012): 716-727.
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Application III�Deep Learning
• Data & relationship = Graph

– Neuron: vertex
– Synapse: edge
– Stimulus intensity: value

• Using graphs to represent different neural networks
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Generality requirement
• High-level abstraction model

– Read-based/Queue-based Model for BFS/APSP 
[Stanford, PACT’10] �

– GAS Model [Google, SIGMOD’10] √

• In GAS (Gather-Apply-Scatter) Model
– Different algorithms à Different Apply functions
– Traverse edges and scatter src to dst
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Characteristics of graph processing
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• Example: Breadth-First Search
– Root: v1
– Generate BFS tree

• Unstructured
– Degree = 1: v7, 8, 9, 10
– Degree = 8: v5

– Data driven
– Example: v5, transfer updated value to 5 vertices

• Unbalanced
– Balanced in Lv.1àunbalanced in Lv.2

• Poor locality
– 4 vertices in Lv.1 spread all over graph
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Challenges in graph processing
• Key in graph processing: efficient data transferring
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Memristor & ReRAM
• Memristor

– Resistance can be changed by voltage

• Storage
– Memristor crossbar
– Using changeable resistance to store information

• Computation
– Processing-in-memory, 10x ~ 100x energy efficiency improvement

compared with conventional von Neumann architecture
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RPBFS [Hong Kong PolyU, NVMSA 17]

• Designed for Breadth-First Search
– Using 1 bit to represent status of a vertex
– Graph Bank: edge storage

• Parallel processing

– Master Bank: vertex storage
• Centralized processing

• Performance
– 33.8x speedup against CPU
– 16.0x speedup against GPU

• However…
– Only for BFS
– Centralization schemeà Scalability problem
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HyVE [Ours, DATE 18]

• Memory energy efficiency difference due to patterns
– Different patterns à corresponding memories à hybrid memory

• Performance
– 114x energy efficiency improvement against CPU+DRAM
– Memory subsystem energy consumption < 50%

15

Vertex: random Read/Write locallyà SRAM
sequential Read/Write globallyà DRAM

Edge: sequential Read globallyà ReRAM



GraphR [Duke, HPCA 18]

• Matrix-vector representation for graph processing
– Src vertex vector, adjacency matrixà Dst vertex vector
– MVM (e.g., PageRank): direct mapping
– Non-MVM (e.g., BFS): activating each row sequentially

• Divide a large adjacency matrix into small blocks
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GraphR [Duke, HPCA 18]

• Compared with CPU
– Speedup: 16.01x
– Energy efficiency: 33.82x

• Compared with GPU
– Speedup: 1.69x ~ 2.19x
– Energy efficiency: 4.77x ~ 8.91x

19



• Energy efficiency of graph processing can be improved by
using ReRAM

Related works – conclusion

RPBFS HyVE GraphR
Algorithm Only BFS General purposed General purposed
Storage RRAM Hybrid RRAM

Computation CMOS CMOS RRAM/CMOS

20

Graph
system RPBFS HyVE GraphR
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However…
• GraphR: Writing ReRAM (adjacency listà block)

• Write-and-verify scheme of ReRAM: Heavy writing overheads

• Sparsity of graphs: Low parallelism

22
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GraphSAR Design
• Design I: Processing-in-memory

• Design II: Sparsity-aware partitioning
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Design I: Processing-in-memory
• Conversion leads to low parallelism/heavy writing overheads

• Directly storing blocks on ReRAM

24

Adj. list

Adj. matrix

Adj. matrix Adj. matrix

GraphR GraphSAR

storage

computation

storage
+

computation

storage
+

computation

conversion

Problem I:
- Heavy writing overheads
- Low parallelism

Problem II:
- Memory space overheads

Design I Design II



Design II: Sparsity-aware partitioning
• Storing 8*8 blocks leads to memory space overheads

• Sparsity-aware partitioning
– Divide large sparse block into small ones
– Drop empty blocks
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Opt. I: Single bit implementation
• For algorithms on unweighted graphs
– e.g., PageRank, BFS, etc.
– Scatter the same value to neighbors
– One bit of an edge to represent connectivity
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Opt. II: lightweight clustering
• Vertex clusteringà less blocks to be processed
– Consecutive vertices in the original adjacency list tend to
gather

– Original indices are not continuous
– Assign new indices to vertices when reading edges
– Only O(n) complexity

27
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Architecture
• According to the sparsity-aware partitioning

– Edges are stored into edge lists and block lists
– Edge lists and block lists are stored into different banks for the

alignment purpose

28



Working flow
• Selecting: activate a block for processing
– GraphR: activate a row

• Processing: process edge list and block list separately
– GraphR: treat a block with one edge as a block

29
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Configuration
• Datasets

• Algorithms
– PageRank, Breadth-first Search, Connected Components

• Configuration
– ReRAM simulator: NVSim

• read/write energy consumption: 1.08pJ/7.4pJ
• read/write latency: 29.31ns/50.88ns
• HRS/LRS resistance: 25MΩ/50KΩ
• read/write voltage: 0.7V/2V
• current of LRS/HRS: 40µA/2µA 31

WV HP GG YT PK CA WT TW FS YH

# V 7.12k 34.5k 0.88m 1.13m 1.63m 1.97m 2.39m 41.7m 65.6m 1.41b

# E 0.10m 0.42m 5.11m 2.99m 30.6m 2.77m 5.02m 1.47b 1.81b 6.64b

type social citation web commun
ity social road commun

ication social commun
ity web

Jure Leskovec et al. SNAP Datasets: Stanford large network dataset collection.
Haewoon Kwak et al. What is twitter, a social network or a news media?
Yahoo WebScope. Yahoo! altavista web page hyper-link connectivity graph, circa 2002.



Results – Opt. I
• Single bit implementation
– Speedup: 1.15x
– Energy efficiency improvement: 2.37x
– Energy-Delay Product reduction: 2.73x
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Results – Opt. II
• Lightweight clustering
– Speedup: 1.30x
– Energy efficiency improvement: 1.37x
– Energy-Delay Product reduction: 1.78x
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Results – Overall performance
• Compared with GraphR (already used Opt. I & II)
– Speedup: 1.85x
– Energy efficiency improvement: 4.43x
– Energy-Delay Product reduction: 8.19x
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Results – Memory space overheads
• Compared with using adjacency list (need to write

ReRAM)
– Only 1.54x storage overheads
– 46.87x storage overheads when storing 8*8 blocks

35
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Conclusion
• GraphSAR
– Improving energy efficiency/Accelerating graph processing
using ReRAM

– Design for different graph algorithms
– Both computation and storage optimization

37
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