
GraphSAR: A Sparsity-Aware Processing-in-
Memory Architecture for Large-Scale Graph

Processing on ReRAMs

Guohao Dai1, Tianhao Huang1,2, Yu Wang1,
Huazhong Yang1, John Wawrzynek3

1Tsinghua University, 2MIT, 3UCB
dgh14@mails.tsinghua.edu.cn

1/22/2019

1
Special thank to Dr. Shaungchen Li and Gushu Li from UCSB

Content
• Background
• Motivation
• Related Work
• GraphSAR design
• Experiment Results
• Conclusion

2

Content
• Background
• Motivation
• Related Work
• GraphSAR design
• Experiment Results
• Conclusion

3

• Graph: represent data and their relationships
• Application: social network analysis, neural network modeling,

user behavior analysis, brain network modeling …
• System & Architecture: support for graph-based applications

Graphs are widely used!

4

User network

User interests
User behavior

Brain network

Neural network

……

……

Application

Graph

System
Architecture

Application I�PageRank
• Sorting billions of pages according

to key words in one second
– Graph�2.9 b, 0.36 s
– PageRank�0.2 b, 0.30 s

• Google PageRank Algorithm
– The rank of a page depends on ranks

of pages which link to it

• Network = Graph

5
Page, Lawrence, et al. The PageRank citation ranking: Bringing order to the web. Stanford InfoLab, 1999.

Important Important
too!

Page A Page B

Link

Application II�Film Recommendation

• Collaborative filtering based on similar users

• ALS�Alternating Least Squares
– Minimize Mean Square Error (MSE)

• Calculating using tags
• Recommending using non-tags

• Sparse matrix = Graph

6
Low, Yucheng, et al. "Distributed GraphLab: a framework for machine learning and data mining in the cloud." Proceedings of the VLDB Endowment 5.8 (2012): 716-727.

vertex

edge

vertex

Application III�Deep Learning
• Data & relationship = Graph

– Neuron: vertex
– Synapse: edge
– Stimulus intensity: value

• Using graphs to represent different neural networks

7

CONV + Non Linear + Pooling CONV + Non Linear + Pooling
FC + Non Linear

FC + Non Linear

Probability in class 1
Probability in class 2

Probability in class N

Input Image Feature Maps

DNN

CNN

RNN

Qiu, Jiantao, et al. "Going deeper with embedded fpga platform for convolutional neural network." Proceedings of the 2016 ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays. ACM, 2016.

Generality requirement
• High-level abstraction model

– Read-based/Queue-based Model for BFS/APSP
[Stanford, PACT’10] �

– GAS Model [Google, SIGMOD’10] √

• In GAS (Gather-Apply-Scatter) Model
– Different algorithms à Different Apply functions
– Traverse edges and scatter src to dst

8

0 1

2

34

5

Original Graph

0 1

2

34

5

Step 1

0 1

2

34

5

Step 2

0 1

2

34

5

Step 3

Malewicz, Grzegorz, et al. "Pregel: a system for large-scale graph processing." SIGMOD. ACM, 2010.
Hong, Sungpack, Tayo Oguntebi, and Kunle Olukotun. "Efficient parallel graph exploration on multi-core CPU and GPU." PACT, IEEE, 2011.

network

sparse
matrix

data with
relationship

graph

Content
• Background
• Motivation
• Related Work
• GraphSAR design
• Experiment Results
• Conclusion and Future Work

9

Characteristics of graph processing

10

• Example: Breadth-First Search
– Root: v1
– Generate BFS tree

• Unstructured
– Degree = 1: v7, 8, 9, 10
– Degree = 8: v5

– Data driven
– Example: v5, transfer updated value to 5 vertices

• Unbalanced
– Balanced in Lv.1àunbalanced in Lv.2

• Poor locality
– 4 vertices in Lv.1 spread all over graph

1 2 3

64 5

8 97

0

1

364

5

8 97

0 2

Lv.0

Lv.1

Lv.2

Root

Thd 1 Thd 2 Thd 3

Degree = 8

Degree = 1

computation

transferring

0 1 2 3 4 5 6 7 8 9

10

10

Thd 410

Mem address

Challenges in graph processing
• Key in graph processing: efficient data transferring

11

Unstructured
Unbalanced

IPC

�8
cores

Xeon E5

�

Data
Driven

Poor
Locality

Cache miss[Zhu_OSDI_2016]

Memory-hungry[Nai_HPCA_2017]

Heavy traffics[Zhu_OSDI_2016]

Characteristics Difficulties

Lower
traffics

Higher
bandwidth

Sequential
access

Solutions

Efficient data
transferring

required!

Memristor & ReRAM
• Memristor

– Resistance can be changed by voltage

• Storage
– Memristor crossbar
– Using changeable resistance to store information

• Computation
– Processing-in-memory, 10x ~ 100x energy efficiency improvement

compared with conventional von Neumann architecture

12

Vik

Voj

gkj

RRR

Vi1

Vi3

Vo1 Vo3

1(), oj ik kj kj
k kj

V r V g g
M

= ⋅ ⋅ =∑

O(n2)àO(n0)

Content
• Background
• Motivation
• Related Work
• GraphSAR design
• Experiment Results
• Conclusion

13

RPBFS [Hong Kong PolyU, NVMSA 17]

• Designed for Breadth-First Search
– Using 1 bit to represent status of a vertex
– Graph Bank: edge storage

• Parallel processing

– Master Bank: vertex storage
• Centralized processing

• Performance
– 33.8x speedup against CPU
– 16.0x speedup against GPU

• However…
– Only for BFS
– Centralization schemeà Scalability problem

14

HyVE [Ours, DATE 18]

• Memory energy efficiency difference due to patterns
– Different patterns à corresponding memories à hybrid memory

• Performance
– 114x energy efficiency improvement against CPU+DRAM
– Memory subsystem energy consumption < 50%

15

Vertex: random Read/Write locallyà SRAM
sequential Read/Write globallyà DRAM

Edge: sequential Read globallyà ReRAM

GraphR [Duke, HPCA 18]

• Matrix-vector representation for graph processing
– Src vertex vector, adjacency matrixà Dst vertex vector
– MVM (e.g., PageRank): direct mapping
– Non-MVM (e.g., BFS): activating each row sequentially

• Divide a large adjacency matrix into small blocks

16

GraphR [Duke, HPCA 18]

• Matrix-vector representation for graph processing
– Src vertex vector, adjacency matrixà Dst vertex vector
– MVM (e.g., PageRank): direct mapping
– Non-MVM (e.g., BFS): activating each row sequentially

• Divide a large adjacency matrix into small blocks

17

0.5 0 0

0

0.1

0.2 0.2

0.1 0

0.8

0.4

0.6

0.46 0.14 0.08

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

4 inf inf

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

3 3 inf

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

3 2 2

GraphR [Duke, HPCA 18]

• Matrix-vector representation for graph processing
– Src vertex vector, adjacency matrixà Dst vertex vector
– MVM (e.g., PageRank): direct mapping
– Non-MVM (e.g., BFS): activating each row sequentially

• Divide a large adjacency matrix into small blocks

18

0.5 0 0

0

0.1

0.2 0.2

0.1 0

0.8

0.4

0.6

0.46 0.14 0.08

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

4 inf inf

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

3 3 inf

1 0 0

1

0

1 0

1 1

3

2

1

sALU sALU sALU

3 2 2

GraphR [Duke, HPCA 18]

• Compared with CPU
– Speedup: 16.01x
– Energy efficiency: 33.82x

• Compared with GPU
– Speedup: 1.69x ~ 2.19x
– Energy efficiency: 4.77x ~ 8.91x

19

• Energy efficiency of graph processing can be improved by
using ReRAM

Related works – conclusion

RPBFS HyVE GraphR
Algorithm Only BFS General purposed General purposed
Storage RRAM Hybrid RRAM

Computation CMOS CMOS RRAM/CMOS

20

Graph
system RPBFS HyVE GraphR

Content
• Background
• Motivation
• Related Work
• GraphSAR design
• Experiment Results
• Conclusion

21

However…
• GraphR: Writing ReRAM (adjacency listà block)

• Write-and-verify scheme of ReRAM: Heavy writing overheads

• Sparsity of graphs: Low parallelism

22

block

GraphSAR Design
• Design I: Processing-in-memory

• Design II: Sparsity-aware partitioning

23

Adj. list

Adj. matrix

Adj. matrix Adj. matrix

GraphR GraphSAR

storage

computation

storage
+

computation

storage
+

computation

conversion
Design I Design II

Design I: Processing-in-memory
• Conversion leads to low parallelism/heavy writing overheads

• Directly storing blocks on ReRAM

24

Adj. list

Adj. matrix

Adj. matrix Adj. matrix

GraphR GraphSAR

storage

computation

storage
+

computation

storage
+

computation

conversion

Problem I:
- Heavy writing overheads
- Low parallelism

Problem II:
- Memory space overheads

Design I Design II

Design II: Sparsity-aware partitioning
• Storing 8*8 blocks leads to memory space overheads

• Sparsity-aware partitioning
– Divide large sparse block into small ones
– Drop empty blocks

25

High
density

empty Low
density

Low
density

Low density
partition

recursion

block

Adj. list

Adj. matrix

Adj. matrix Adj. matrix

GraphR GraphSAR

storage

computation

storage
+

computation

storage
+

computation

conversion

Problem I:
- Low parallelism
- Heavy writing overheads

Problem II:
- Memory space overheads

Design I Design II

Opt. I: Single bit implementation
• For algorithms on unweighted graphs
– e.g., PageRank, BFS, etc.
– Scatter the same value to neighbors
– One bit of an edge to represent connectivity

26

0.5 0 0

0

0.1

0.2 0.2

0.1 0

0.8

0.4

0.6

0.46 0.14 0.08

1 0 0

0

1

1 1

1 0

0.8*0.5=0.4

0.4*0.2=0.08

0.6*0.1=0.06

0.46 0.14 0.08

GraphR GraphSAR

Opt. II: lightweight clustering
• Vertex clusteringà less blocks to be processed
– Consecutive vertices in the original adjacency list tend to
gather

– Original indices are not continuous
– Assign new indices to vertices when reading edges
– Only O(n) complexity

27

Original edge list
src srcdst dst

Architecture
• According to the sparsity-aware partitioning

– Edges are stored into edge lists and block lists
– Edge lists and block lists are stored into different banks for the

alignment purpose

28

Working flow
• Selecting: activate a block for processing
– GraphR: activate a row

• Processing: process edge list and block list separately
– GraphR: treat a block with one edge as a block

29

Content
• Background
• Motivation
• Related Work
• Architecture and Detailed Implementation
• Experiment Results
• Conclusion and Future Work

30

Configuration
• Datasets

• Algorithms
– PageRank, Breadth-first Search, Connected Components

• Configuration
– ReRAM simulator: NVSim

• read/write energy consumption: 1.08pJ/7.4pJ
• read/write latency: 29.31ns/50.88ns
• HRS/LRS resistance: 25MΩ/50KΩ
• read/write voltage: 0.7V/2V
• current of LRS/HRS: 40µA/2µA 31

WV HP GG YT PK CA WT TW FS YH

V 7.12k 34.5k 0.88m 1.13m 1.63m 1.97m 2.39m 41.7m 65.6m 1.41b

E 0.10m 0.42m 5.11m 2.99m 30.6m 2.77m 5.02m 1.47b 1.81b 6.64b

type social citation web commun
ity social road commun

ication social commun
ity web

Jure Leskovec et al. SNAP Datasets: Stanford large network dataset collection.
Haewoon Kwak et al. What is twitter, a social network or a news media?
Yahoo WebScope. Yahoo! altavista web page hyper-link connectivity graph, circa 2002.

Results – Opt. I
• Single bit implementation
– Speedup: 1.15x
– Energy efficiency improvement: 2.37x
– Energy-Delay Product reduction: 2.73x

32

0

1

2

WV HP GG YT PK CA WT TW FS YH

Time PR BFS CC

0
1
2
3
4
5

WV HP GG YT PK CA WT TW FS YH

Energy PR BFS CC

Results – Opt. II
• Lightweight clustering
– Speedup: 1.30x
– Energy efficiency improvement: 1.37x
– Energy-Delay Product reduction: 1.78x

33

0

1

2

3

WV HP GG YT PK CA WT TW FS YH

Time PR BFS CC

0

1

2

3

WV HP GG YT PK CA WT TW FS YH

Energy PR BFS CC

Results – Overall performance
• Compared with GraphR (already used Opt. I & II)
– Speedup: 1.85x
– Energy efficiency improvement: 4.43x
– Energy-Delay Product reduction: 8.19x

34

0
1
2
3
4
5

WV HP GG YT PK CA WT TW FS YH

Time PR BFS CC

0
3
6
9
12

WV HP GG YT PK CA WT TW FS YH

Energy PR BFS CC

Results – Memory space overheads
• Compared with using adjacency list (need to write

ReRAM)
– Only 1.54x storage overheads
– 46.87x storage overheads when storing 8*8 blocks

35

1

2

4

8

16

32

64

WV HP GG YT PK CA WT TW FS YH Mean

using 8×8 blocks using 8×8 blocks and edge list
sparsity-aware partitioning sparsity-aware partitioning + clustering

Content
• Background
• Motivation
• Related Work
• Architecture and Detailed Implementation
• Experiment Results
• Conclusion

36

Conclusion
• GraphSAR
– Improving energy efficiency/Accelerating graph processing
using ReRAM

– Design for different graph algorithms
– Both computation and storage optimization

37
RPBFS

GraphR HyVEGraphSAR

computation
optimization

General

Single Alg.

storage
optimization

References
1. Linghao Song et al. GraphE: Accelerating graph processing using reram. In HPCA, pages

531–543. IEEE, 2018.
2. Aapo Kyrola et al. Graphchi: Large-scale graph computation on just a pc. In OSDI, pages 31–

46. USENIX, 2012.
3. Amitabha Roy et al. X-stream: Edge-centric graph processing using streaming partitions. In

SOSP, pages 472–488. ACM, 2013.
4. Xiaowei Zhu et al. Gridgraph: Large-scale graph processing on a single machine using 2-level

hierarchical partitioning. In ATC, pages 375–386. USENIX, 2015.
5. Yuze Chi et al. Nxgraph: An efficient graph processing system on a single machine. In ICDE,

pages 409–420. IEEE, 2016.
6. Grzegorz Malewicz et al. Pregel: a system for large-scale graph processing. In SIGMOD,

pages 135–146. ACM, 2010.
7. Yucheng Low et al. Distributed GraphLab: a framework for machine learning and data mining

in the cloud. Proceedings of the VLDB Endowment, 5(8):716–727, 2012.
8. Tae Jun Ham et al. Graphicionado: A high-performance and energy-efficient accelerator for

graph analytics. In MICRO, pages 1–13. IEEE, 2016.
9. Fabien Alibart et al. High precision tuning of state for memristive devices by adaptable

variation-tolerant algorithm. Nanotechnology, 23(7):075201, 2012.
10. Cong Xu et al. Overcoming the challenges of crossbar resistive memory architectures. In

HPCA, pages 476–488. IEEE, 2015. 38

References
11. Lei Han et al. A novel reram-based processing-in-memory architecture for graph computing.

In NVMSA, pages 1–6. IEEE, 2017.
12. Tianhao Huang et al. Hyve: Hybrid vertex-edge memory hierarchy for energyefficient graph

processing. In DATE. EDA Consortium, 2018.
13. Cong Xu et al. Understanding the trade-offs in multi-level cell reram memory design. In

DAC, pages 1–6. IEEE, 2013.
14. Xiaowei Zhu et al. Gemini: A computation-centric distributed graph processing system. In

OSDI, pages 301–316. USENIX, 2016.
15. Dimin Niu et al. Design of cross-point metal-oxide reram emphasizing reliability and cost. In

ICCAD, pages 17–23. IEEE, 2013.
16. Jure Leskovec et al. SNAP Datasets: Stanford large network dataset collection.

http://snap.stanford.edu/data, June 2014.
17. Haewoon Kwak et al. What is twitter, a social network or a news media? In WWW, pages

591–600. ACM, 2010.
18. Yahoo WebScope. Yahoo! altavista web page hyper-link connectivity graph, circa 2002.

http://webscope.sandbox.yahoo.com/, 2012.
19. Xiangyu Dong et al. Nvsim: A circuit-level performance, energy, and area model for

emerging non-volatile memory. In Emerging Memory Technologies, pages 15–50. Springer,
2014.

39

References
20. Shimeng Yu et al. Investigating the switching dynamics and multilevel capability of bipolar

metal oxide resistive switching memory. Applied Physics Letters, 98(10):103514, 2011.
21. Steven JE Wilton and Norman P Jouppi. Cacti: An enhanced cache access and cycle time

model. JSSC, 31(5):677–688, 1996.
22. Boris Murmann. ADC performance survey 1997-2017. http://web.stanford.edu/ ˜m

urmann/adcsurvey.html, August 2017.

40

Thank you!
Q & A

