
Quantum Circuit Compilers
Using Gate Commutation Rules

Toshinari Itoko, Rudy Raymond, Takashi Imamichi,
Atsushi Matsuo, Andrew W. Cross

IBM Research

1

Quantum compiler
Quantum Algorithm

Quantum Computer

Computational result

Quantum Program

Programming

Quantum Compiler

Quantum Circuit

• Dozens of quantum algorithms have been
developed (e.g. see “Quantum Algorithm Zoo”).

• Factoring [Shor 1994], Database search [Grover 1996]

• Recent advance in HW technologies has enabled
anyone with access to real quantum computers.

• IBM (2016), Rigetti Computing (2017), Alibaba (2018)

• To run quantum algorithms on quantum computer,
we need Software Development Kit (SDK)
including quantum (circuit) compiler.

2

SDK

Three major functionalities in quantum compiler

Quantum Program

Quantum Compiler

Quantum Circuit

• Decomposition
Decompose a program into
elementary operations (gates)

• Optimization
Optimize a quantum circuit
(sequence of gates)

• Mapping
Transform a logical quantum circuit
into an physical one satisfying
processor-dependent constraints

Decomposition

Optimization

3

Swap gate mapping

IN: Logical circuit

b1 •CX1 CX4

b2 •CX3
H •

b3 •CX2

b4

Figure 1: Logical quantum circuit

1

OUT: Physical circuit
q1 (b1) • ⇥ (b3)

q2 (b2) ⇥ • ⇥ (b1)

q3 (b3) ⇥ • H • (b2)

q4 (b4) (b4)

Figure 1: Physical quantum circuit

1

Coupling constraint

Additional swap gates

• Find a mapping: Logical circuit -> Physical circuit
• Mapping = Initial qubit layout + Additional swap gates
• Layout = Allocation of logical qubits to physical qubits

• Subject to coupling constraint

q1 q2 q3

q4

Initial qubit layout

Rx
Rx

4

Minimize

Our research contribution
1. Formulation of Minimum Swap Gate Mapping (MSGM) with

considering gate commutation rules
• Decrease gate dependencies = increase search space

2. A better heuristic algorithm for solving MSGM

5

(b1, b2)

(b3, b4)

(b2, b1)(b2, b3)

CX1

CX2

CX3 CX4

(b2)

HRz
Rz (b1, b2)

(b3, b4)

(b2, b1)

(b2, b3)CX1

CX2

CX3

CX4

(b2)

RzRz

Input circuit
Gate dependencies

Conventional Proposed

(b1, b2)

(b3, b4)

(b2, b1)

(b2, b3)CX1

CX2

CX3

CX4

(b2)

RzRz=

Quantum circuit

Gate application order

Qubits

CNOT

One-qubit gate

Quantum circuit is a sequence of elementary quantum gates.

We consider a universal gate set {Rx, Rz, CNOT}.
• One-qubit rotation gates: Rx, Rz

b1 •CX1 CX4

b2 •CX3
H •

b3 •CX2

b4

Figure 1: Logical quantum circuit

1

Rx

• Controlled-NOT gate (CNOT)

Rx[!](b2)

CNOT(b3, b4)

Rx

Acting qubits

Control qubit

Acting qubit

Target qubit

Rotation angle (omit in this talk)

6

Ex) Quantum circuit

Coupling constraint

Coupling Graph

Only two-qubit (CNOT) gates on coupled qubits are allowed,
which is represented by coupling graph.

Node ó Qubit
Edge ó Coupling

Qubit 0

Qubit 2

0 1

2

3 4

Qubit 1

Device image of IBM Q 5 Tenerife [ibmqx4]

Qubit 3

7

Qubit 4

Constraint satisfaction by adding swap gate

CNOT(b", b#) is now executable as CNOT($%, $#)

b1 •CX1 CX4

b2 •CX3
H •

b3 •CX2

b4

Figure 1: Logical quantum circuit

1

q1 (b1) • ⇥ (b3)

q2 (b2) ⇥ • ⇥ (b1)

q3 (b3) ⇥ • H • (b2)

q4 (b4) (b4)

Figure 1: Physical quantum circuit

1

q1 q2 q3

q4

Example (Initial qubit layout: &' -> $' for i = 1,2,3,4)

Not executable

b"

b#
Add SWAP(q%, q")

b%b"b%b)

b#

Logical qubits are swapped

Coupling constraint can be resolved by adding swap gates.

q1 q2 q3

q4

Rx
Rx

8

Minimum Swap Gate Mapping (MSGM)

Logical circuit

b1 •CX1 CX4

b2 •CX3
H •

b3 •CX2

b4

Figure 1: Logical quantum circuit

1

Physical circuit
q1 (b1) • ⇥ (b3)

q2 (b2) ⇥ • ⇥ (b1)

q3 (b3) ⇥ • H • (b2)

q4 (b4) (b4)

Figure 1: Physical quantum circuit

1

Coupling constraint

Additional swap gates

• Logical circuit + Gate commutation rules + Coupling constraint
-> Physical circuit (Initial qubit layout + Additional swap gates)

Initial qubit layout

Rz
Rz

9

Minimize
Our solution

Gate commutation rules

Dependency graph

(b1, b2)

(b3, b4)

(b2, b1)

(b2, b3)CX1

CX2

CX3

CX4

(b2)

RzRz

Gate commutation rules
We take into account 4 commutation rules:

(a)(b)

Ex) Equivalent conversion
considering commutation rules

Two consecutive gates are commutative ó
They can be exchanged without changing what they compute.

10

Rz

(b1, b2)

(b3, b4)

(b2, b1)

(b2, b3)CX1

CX2

CX3

CX4

(b2)

RzRz

Dependency graph

Node ó Gate
Edge ó Dependency

Dependency graph represents the precedence relation of gates in a circuit.

Gate u precedes v ó Path from u to v exists

Rx

(b1, b2)

(b3, b4)

(b2, b1)(b2, b3)

CX1

CX2

CX3 CX4

(b2)

HRx

11

Blocking Gates
Our algorithms maintain their progress by blocking gates.

Blocking gates are leading unresolved gates in dependency graph
(for a current qubit layout).

3

4

5
7

8
6

9

1

2

Resolved gates = {1, 2}

Blocking gates = {3, 4}
Unresolved gates = {3, 4, 5, 6, 7, 8, 9}

12

Heuristic algorithm (Outline)

Dependency graph

3

4

5

7

8

6
9

1

2

(Current) blocking gates K

• Maintains layout ! and blocking gates K
• Assumes an initial layout is given
• Selects a qubit pair to be swapped based on its swap score

13

Initialize K as gates without in-edge in dependency graph

Compute swap score for each edge in coupling graph

Add swap at max-score edge (i.e. update !)

Yes

Update K by processing feasible gates

No

Terminate

Is K empty ?

Heuristic algorithm (Details)
For each edge i.e. coupled physical qubits (i, j),
swap score of (i, j) := current cost – cost after swap (i, j)

cost := sum of (weighted) shortest path lengths on coupling
graph between acting qubits for all unresolved gates

q0

q2q1 q3 q4

b0

b1 b2 b3 b4

Layout ! = (b0, b1, b2, b3, b4) → (q0, q1, q2, q3, q4)
Blocking gates K = {CNOT(b0, b4)}
Unresolved gates = {CNOT(b0, b4), CNOT(b2, b4)}

Coupling graph

current cost = (1.0) x 3 + (0.5) x 2

cost after swap (i, j) =
(q0, q2) => (1.0) x 2 + (0.5) x 3
(q1, q2) => (1.0) x 3 + (0.5) x 3
(q2, q3) => (1.0) x 3 + (0.5) x 1
(q3, q4) => (1.0) x 2 + (0.5) x 1

CNOT(b0,b4) CNOT(b2,b4)

14

Computational experiment: Setting
We compared the numbers of additional swap gates of our heuristic
with those of two state-of-the-art algorithms.

Dataset
Circuits originated from RevLib benchmark

We chose 44 circuits with #qubits ≥ 10 and #gates ≤ 50, 000 from the circuits
available at http://iic.jku.at/eda/research/ibm_qx_mapping

Coupling graphs
IBM Q 16 Rueschlikon V1.0.0 (ibmqx3)

QRAND: A randomized heuristic algorithm implemented in QISKit 0.5.4
ZPW: A∗-based heuristic search algorithm proposed by Zulehner, Paler, Wille (2018)

We set the initial qubit layout for our heuristic and QRAND to "# -> $# for all i.

15

Evaluation of heuristic algorithm
Our algorithm outperformed QRAND and ZPW for all instances.
• #swaps decreased by 45.5% from QRAND, 23.8% from ZPW on average

Numbers of additional swap gates (for circuits with 10 qubits)

16

Circuit name #qubits #gates
mini_alu_305 10 173
qft_10 10 200
sys6-v0_111 10 215
rd73_140 10 230
ising_model_10 10 480
rd73_252 10 5,321
sqn_258 10 10,223
sym9_148 10 21,504
max46_240 10 27,126

QRAND ZPW Proposed
80 46 40
82 40 33

116 67 46
100 58 49

18 14 12
2,054 1,541 1,212
4,060 2,867 2,254
8,001 5,907 4,456

10,833 8,012 5,905

Summary
• Considering gate commutation rules in the formulation of

quantum circuit mapping is significant.
• Dependency graph helps us develop better algorithms:

Our heuristic algorithm performs very well in the experiment.

Future work
• Finding better initial qubit layouts
• Considering other cost functions

• Depth
• Fidelity

17

