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Neural Network Accelerators

• Large data movements cause high energy consumption in CNN
– The data transfer in GPU consumes 2 orders of magnitude more energy 

than a floating-point operation [Han S, et al. ISCA’ 16]

• The energy efficiency of existing Neural Network accelerators is
limited at ~10TOPs/W (i.e. 0.1pJ/OP)
– The gap between brain (500TOPs/W) and accelerators is more than 50x
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https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/
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RRAM-based Computing System (RCS)

• RRAM and Processing-In-Memory provide alternative solutions to
realize better implementation of CNN
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RRAM
Precision Function Performance Ref.

ISAAC 2 bits CNN Inference
14.8x Throughput and 4.4x Energy

Efficiency
(Compared with DaDianNao)

A. Shafiee, et al.
ISCA’16

PRIME 4 bits CNN Inference
2360x Speedup and 895x Energy

Efficiency
(Compared with DianNao)

P. Chi, et al.
ISCA’16

PipeLayer 5~6 bits CNN Inference
and Training

42.45x Speedup and 7.17x Energy
Efficiency

(Compared with GPU)

L. Song, et al. 
HPCA’17 

TIME 4 bits
CNN/DRL
Inference

and Training

CNN: 1.3x Speedup and 19.6x Energy
Efficiency

(Compared with DaDianNao)
DRL: 126x Energy Efficiency

(Compared with GPU)

M. Cheng, et al. 
TCAD’18 

NTHU Chip 1 bit Binary DNN/CNN
CNN: 14.8ns/MAC
FCN: 15.6ns/MAC

(LeNet-5 @ MNSIM)

W. Chen, et al.
ISSCC’18

Representative RCS Design



Yield Ideal 95% 90% 80%
Accuracy 97.8% 26.7~

60.4%
15.5~
38.6%

10.6~
28.0%

Reduction - >37% >59% >69%
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• RCS faults make the CNN computing inaccurate and the system
unreliable

RCS Faults
• The general RCS faults mean RRAM device faults and other non-
ideal factors which will cause computation deviation
��-����
��-�	

l Stuck-At-Fault (SAF)
l Limited Endurance
l State Drift Problem
l Resistance Variation
l Non-linear Resistance

Distribution

�������
��-�	

l Wire Resistance
l IR-drop
l Sneak Path

����
�
��-�	 l Unbalanced Writing
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Fault Tolerance in RCS

• According to the type of RCS faults, we have proposed corresponding
fault tolerance methods to rescue the computation accuracy and
reliability of RCS.
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Overview of RRAM Device Faults

• Hard / Soft: Resistance Unchangeable / Changeable
• Static / Dynamic: Generated during Fabrication / Read-and-Write
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Overview of RRAM Device Faults

• Fault-tolerance methods for RRAM device faults

Hard Soft

Dynamic

Static

Endurance
Limitation

Fabrication
Defect

Write Variation

Write Disturbance

Read Disturbance

Fabrication
Variation
Non-linear
Distribution

��
 �	����	��
DAC 17-1

TCAD 19-1

��
 �	����	� ��
ITC 18

��
 �	����	� ��
ASPDAC 17
JETCAS 18

��
 �	����	��
DAC 17-2

TCAD 19-2

��
 �	����	��
DATE 14

��
 �	����	��
DATE 18



p. 12

Device Fault 1: SAF

• Stuck-At-Faults (SAFs): the resistance states cannot be changed
• SAFs cause significant accuracy loss of neuromorphic computing

– The recognition accuracy of the MNIST drops to 17.75% @ 20% SAFs

Yield Ideal 95% 90% 80%
Accuracy 97.8% 26.7~

60.4%
15.5~
38.6%

10.6~
28.0%

Reduction - >37% >59% >69%
Stuck-at-0 (black)
[C. Chen, IEEE Trans.
Computers 2015]
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Fault Tolerance Method for SAF

• SAF tolerant framework contains two parts:
– Fault detection: identify the SAF position
– Fault tolerance: restore the accuracy

Fault Detection

Fault Tolerance
Stuck-at-0 (black)

SAF

[C. Chen, IEEE Trans.
Computers 2015]

Voltage-Comparison Method
[L. Xia, et al. DAC 17 & TCAD 19]

Extended ABFT
[M. Liu, et al. ITC’18]

Redundancy Schemes
[L. Xia, et al. JETCAS’18]

Algorithm Retraining and
Remapping

[L. Xia, et al. DAC 17 & TCAD 19]
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SAF Detection: Identify SAF Position

• Voltage comparison method [DAC 2017 & TCAD 2019]

– Speed up detection by more than 14X compared with sneak-path technique

Read
• Read 

original 
value

Write
• Write 

delta

Test
• Check 

SAF

Write
• Recover 

data

• X-ABFT [ITC 2018]

– Identify the faulty column: add two checksum columns 

– Identify the faulty row: apply multiple test input vectors
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SAF Tolerance: Restore the Accuracy
• Computation-oriented redundancy scheme [ASPDAC 2017 & JETCAS 2018]

– Mapping algorithm with inner fault-tolerant ability when using redundant
crossbars and independent redundant columns 

• Improve the accuracy from 25% to 96% w/ 10% SAF @ MNIST



• SAF caused by limited endurance will hurt training performance

p. 16

Device Fault 2: Limited Endurance

• The write endurance of RRAM is limited
– The typical endurance of a multi-level RRAM cell ranges from 106 to 108

– Writing RRAM over the endurance may lead to SAF
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• Fault-tolerant training and remapping [DAC 2017-1 & TCAD 2019-1]

– Use a threshold-training method to reduce the write times
– Use a re-mapping scheme: map pruned network value to Stuck-At-0 cells

• Improve the accuracy from 37% to 83% @ Cifar-10

Fault Tolerance Method for Limited Endurance
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• State drifting: Read operations also change the RRAM resistance
slowly

• State drifting causes a decline of RCS’s performance

Device Fault 3: State Drifting Problem

• ICE: Inline Calibration for Memristor Crossbar-based Computing 
Engine [DATE 2014]

– Periodically interrupt-and-benchmark (I&B) RCS
– Minimize the negative impact of the I&B operation on system performance

• Achieves a calibration efficiency of 91.18% on average, improving 
21.77% compared to the one with a constant calibration period
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• Resistance variation: the actual change of RRAM resistance is

different from the target

• Resistance variation makes write operation inaccurate

Device Fault 4: Resistance Variation

• Variability-free Tuning Scheme [DAC 2017-2 & TCAD 2019-2]

– Use ideal value and variance of RRAM model for tuning w/ 3! principle

• The energy efficiency is improved 2.28x on average, 2.29x at most 

compared with existing tuning scheme



p. 20

• The actual fabricated multi-level devices show the distribution of

resistance level is not linear
– Nonlinear resistance distribution causes high computing RMSE

Device Fault 5: Nonlinear Resistance Distribution

!" = $
%& + ("
%&)
%*"

Non-linear resistance

distribution

• Computation accuracy recovery framework [DATE 2018]

– Applying non-linear voltage, retraining, and designing new sensing structure

• Devices with non-linear conductance levels can achieve the same 
accuracy as the ideal linear devices, reduce 99% RMSE

The overall accuracy recovery

framework
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• Wire resistances cause IR drop problem, resulting in accuracy loss in
large crossbars

• Choices of load resistor and RRAM resistance range also influence
the computation accuracy

Circuit-level Faults and Non-ideal Factors

Error rate under different
crossbar sizes

Error rate under different load
resistances and RRAM range



p. 23

• Technological exploration of RRAM crossbar to overcome the circuit-
level faults and non-ideal factors [ASPDAC 2015 & JCST 2016]

Fault Tolerance Method for Circuits Fault

• Results of Technological exploration:
– Achieve 10.98% improvement of recognition accuracy on the MNIST 

dataset and 26.4% energy savings compared with previous work
– More than 84.4% power saving can be achieved at the cost of little 

accuracy reduction
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RRAM Endurance Problem in Training

model iteration dataset

LeNet-5 10,000 MNIST

ResNet-20 64,000 CIFAR-10

VGG-11 78,200 CIFAR-10

ResNet-50 500,000 ImageNet

The overall write distribution of 
RRAM crossbars 

• The lifetime of existing training RCS is short
– Reason I: RRAM endurance is limited (e.g., 106~108), but the number of

iteration and RRAM writing in training is large
– Reason II: The weight update is unbalanced

(5×10&)/(5×10)) ≈ 10 times
Expected Lifetime (if endurance ~ 5×10&) 
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• Long Live TIME: improve the training lifetime [DAC 2018]

– SGS: Structured Gradient Sparsification

Fault Tolerance Method for Training RCS

Convolution kernel: !"# ∗ %
Complexity: !"# ∗ % + k"C
O(nlogk)->O(n)

Two benefits: Structured Weight Updating
Less Sorting Operations
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• Long Live TIME: improve the training lifetime [DAC 2018]

– SGS: Structured Gradient Sparsification

– ARS: Aging-aware Row Swapping

Fault Tolerance Method for Training RCS

Counter Memory Requirement:
!"# ∗ %, % = log"*+,-./0

Two hyper-parameters:
ARS Interval: 1-
Number of swapped rows: 2
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• Long Live TIME: improve the training lifetime [DAC 2018]

– SGS: Structured Gradient Sparsification
– ARS: Aging-aware Row Swapping
– SGS-ARS Training Framework

Fault Tolerance Method for Training RCS
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• Results of Long Live TIME [DAC 2018]

– Achieve 356x longer lifetime in the training task of ResNet-50 on ImageNet

Fault Tolerance Method for Training RCS



• An RRAM-based computing system (RCS) provides a

promising solution for neuromorphic computing

• RCS is vulnerable to faults

– RCS contains 3-level faults: device, circuit, and system

– Testing and fault-tolerant designs are important for RCS

– Promising solutions have recently developed for testing and fault 

tolerance in RCS

• Next steps: Better understanding of the physics of defects 

and the impact of faults on circuit operation

p. 30

Conclusions
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