

Fault Tolerance in Neuromorphic Computing Systems

Yu Wang¹, Mengyun Liu², Krishnendu Chakrabarty², Lixue Xia¹

¹Tsinghua University, China ²Duke University, U.S.A.

Email: yu-wang@tsinghua.edu.cn

http://nicsefc.ee.tsinghua.edu.cn

- Outline
- Background and Introduction
 - Convolutional Neural Network Accelerators
 - RRAM and RRAM-based Computing System
 - RRAM Fault Models
- Fault-tolerance for Device-level Faults
 - Stuck-At-Fault (SAF)
 - Limited Endurance
 - State Drifting Problem and Resistance Variation
 - Non-linear Resistance Distribution
- Fault-tolerance for Circuit-level Faults
 - Wire Resistance and IR-drop
- Fault-tolerance for System-level Faults
- p. 2 Unbalanced Writing

- Background and Introduction
 - Convolutional Neural Network Accelerators
 - RRAM and RRAM-based Computing System
 - RRAM Fault Models
- Fault-tolerance for Device-level Faults
 - Stuck-At-Fault (SAF)
 - Limited Endurance
 - State Drifting Problem and Resistance Variation
 - Non-linear Resistance Distribution
- Fault-tolerance for Circuit-level Faults
 - Wire Resistance and IR-drop
- Fault-tolerance for System-level Faults
- p. 3 Unbalanced Writing

Neural Network Accelerators

- The energy efficiency of existing Neural Network accelerators is limited at ~10TOPs/W (i.e. 0.1pJ/OP)
 - The gap between brain (500TOPs/W) and accelerators is more than 50x

Neural network accelerator comparison

https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

- Large data movements cause high energy consumption in CNN
 - The data transfer in GPU consumes 2 orders of magnitude more energy than a floating-point operation [Han S, et al. ISCA' 16]

• **RRAM and Processing-In-Memory** provide alternative solutions to realize better implementation of CNN

Representative RCS Design

	RRAM Precision	Function	Performance	Ref.
ISAAC	2 bits	CNN Inference	14.8x Throughput and 4.4x Energy Efficiency (Compared with DaDianNao)	A. Shafiee, et al. ISCA'16
PRIME	4 bits	CNN Inference	2360x Speedup and 895x Energy Efficiency (Compared with DianNao)	P. Chi, et al. ISCA'16
PipeLayer	5~6 bits	CNN Inference and Training	42.45x Speedup and 7.17x Energy Efficiency (Compared with GPU)	L. Song, et al. HPCA'17
TIME	4 bits	CNN/DRL Inference and Training	CNN: 1.3x Speedup and 19.6x Energy Efficiency (Compared with DaDianNao) DRL: 126x Energy Efficiency (Compared with GPU)	M. Cheng, et al. TCAD'18
NTHU Chip	1 bit	Binary DNN/CNN	CNN: 14.8ns/MAC FCN: 15.6ns/MAC (LeNet-5 @ MNSIM)	W. Chen, et al. ISSCC'18

RCS Faults

The general *RCS faults* mean *RRAM device faults* and other *non-ideal factors* which will cause computation deviation

RCS faults make the CNN computing inaccurate and the system unreliable

Fault Tolerance in RCS

• According to the type of *RCS faults*, we have proposed corresponding *fault tolerance methods* to rescue the computation accuracy and reliability of RCS. **RRAM-based Computing System** System-**Device-Circuit**level level level **Unbalanced** Limited Resistance **Non-linear** IR Sneak State Wire SAF **Distribution Drop** Writing Endurance Drift Variation Resistance Path ASPDAC' 17 **DAC'17-1** DATE' 14 DAC'17-2 **DATE' 18 ASPDAC'15 DAC' 18 ITC'18** TCAD'19-1 **TCAD'19-2 JCST'16** p. 8 **JETCAS' 18**

- Outline
- Background and Introduction
 - Convolutional Neural Network Accelerators
 - RRAM and RRAM-based Computing System
 - RRAM Fault Models
- Fault-tolerance for Device-level Faults
 - Stuck-At-Fault (SAF)
 - Limited Endurance
 - State Drifting Problem and Resistance Variation
 - Non-linear Resistance Distribution
- Fault-tolerance for Circuit-level Faults
 - Wire Resistance and IR-drop
- Fault-tolerance for System-level Faults
- p.9 Unbalanced Writing

- Hard / Soft: Resistance Unchangeable / Changeable
- Static / Dynamic: Generated during Fabrication / Read-and-Write

• *Fault-tolerance methods* for RRAM device faults

NI

- Stuck-At-Faults (SAFs): the resistance states *cannot be changed*
- SAFs cause significant *accuracy loss* of neuromorphic computing
 - The recognition accuracy of the MNIST drops to 17.75% @ 20% SAFs

Stuck-at-0 (black) [C. Chen, IEEE Trans. Computers 2015]

Yield	Idea	95%	90%	80%
Accuracy	97.8%	‰ 26.7 ~	15.5~	10.6~
		60.4%	38.6%	28.0%
Reduction	-	>37%	>59%	>69%

- SAF tolerant framework contains two parts:
 - Fault detection: identify the SAF position
 - Fault tolerance: restore the accuracy

SAF Detection: Identify SAF Position

- Voltage comparison method [DAC 2017 & TCAD 2019]
 - Speed up detection by more than 14X compared with sneak-path technique

Х

Х

Х

Х

 $\mathbf{X} \mid \mathbf{X} \mid \mathbf{X}$

Х

Х

- X-ABFT [ITC 2018]
 - Identify the faulty column: add two checksum columns
 - Identify the faulty row: apply multiple test input vectors

- Computation-oriented redundancy scheme [ASPDAC 2017 & JETCAS 2018]
 - Mapping algorithm with inner fault-tolerant ability when using redundant crossbars and independent redundant columns
- Improve the accuracy from 25% to 96% w/ 10% SAF @ MNIST

- The write endurance of RRAM is *limited*
 - The typical endurance of a multi-level RRAM cell ranges from 10^6 to 10^8
 - Writing RRAM over the endurance may lead to SAF
- SAF caused by limited endurance will *hurt training performance*

- Fault-tolerant training and remapping [DAC 2017-1 & TCAD 2019-1]
 - Use a threshold-training method to reduce the write times
 - Use a re-mapping scheme: map pruned network value to Stuck-At-0 cells
- Improve the accuracy from **37% to 83%** @ Cifar-10

Device Fault 3: State Drifting Problem

- State drifting: Read operations also change the RRAM resistance slowly
- State drifting causes *a decline of RCS's performance*
- ICE: *Inline Calibration* for Memristor Crossbar-based Computing Engine [DATE 2014]
 - Periodically interrupt-and-benchmark (I&B) RCS
 - Minimize the negative impact of the I&B operation on system performance
- Achieves a calibration efficiency of 91.18% on average, improving 21.77% compared to the one with a constant calibration period

Device Fault 4: Resistance Variation

- **Resistance variation:** the actual change of RRAM resistance is different from the target $\Delta R_{real} \sim N(\Delta R_{accurate}, 0.09R)$
- Resistance variation makes write operation *inaccurate*
- Variability-free Tuning Scheme [DAC 2017-2 & TCAD 2019-2]
 - Use ideal value and variance of RRAM model for tuning w/ 3σ principle
- The energy efficiency is improved 2.28x on average, 2.29x at most compared with existing tuning scheme

Device Fault 5: Nonlinear Resistance Distribution

- The actual fabricated multi-level devices show the distribution of resistance level is *not linear*
 - Nonlinear resistance distribution causes *high computing RMSE*
- Computation *accuracy recovery* framework [DATE 2018]
 - Applying non-linear voltage, retraining, and designing new sensing structure
- Devices with non-linear conductance levels can achieve the same accuracy as the ideal linear devices, reduce 99% RMSE

- Outline
- Background and Introduction
 - Convolutional Neural Network Accelerators
 - RRAM and RRAM-based Computing System
 - RRAM Fault Models
- Fault-tolerance for Device-level Faults
 - Stuck-At-Fault (SAF)
 - Limited Endurance
 - State Drifting Problem and Resistance Variation
 - Non-linear Resistance Distribution
- Fault-tolerance for Circuit-level Faults
 - Wire Resistance and IR-drop
- Fault-tolerance for System-level Faults
- p. 21 Unbalanced Writing

- Wire resistances cause IR drop problem, resulting in accuracy loss in large crossbars
- Choices of *load resistor* and *RRAM resistance range* also influence the computation accuracy

- Technological exploration of RRAM crossbar to overcome the circuitlevel faults and non-ideal factors [ASPDAC 2015 & JCST 2016]
- Results of Technological exploration:
 - Achieve 10.98% improvement of recognition accuracy on the MNIST dataset and 26.4% energy savings compared with previous work
 - More than 84.4% power saving can be achieved at the cost of little accuracy reduction

Table 2. Power Saving with a Restricted Accuracy								
Threshold (Initial $R_{\rm ON} = 500 \ \Omega$)								
Technology	Accuracy	Optimal	Initial	Optimal	Power			
Node	Threshold	$R_{\rm ON}$	Power	Power	Savings			
(nm)	(%)	$(k\Omega)$	(mW)	(mW)	(%)			
16	80	17.0	2.10	0.340	83.7			
22	80	16.3	2.16	0.347	83.9			
28	80	16.0	2.19	0.351	84.0			
36	80	16.0	2.26	0.353	84.4			
22	85	5.0	2.16	0.611	71.7			

- Outline
- Background and Introduction
 - Convolutional Neural Network Accelerators
 - RRAM and RRAM-based Computing System
 - RRAM Fault Models
- Fault-tolerance for Device-level Faults
 - Stuck-At-Fault (SAF)
 - Limited Endurance
 - State Drifting Problem and Resistance Variation
 - Non-linear Resistance Distribution
- Fault-tolerance for Circuit-level Faults
 - Wire Resistance and IR-drop
- Fault-tolerance for System-level Faults
- p. 24 Unbalanced Writing

- The lifetime of existing training RCS is *short*
 - Reason I: RRAM endurance is *limited* (e.g., 10⁶~10⁸), but the number of iteration and RRAM writing in training is *large*
 - Reason II: The weight update is unbalanced

model	iteration	dataset	20					400
LeNet-5	10,000	MNIST	40 60					300
ResNet-20	64,000	CIFAR-10	80					200
VGG-11	78,200	CIFAR-10	100 120					100
ResNet-50	500,000	ImageNet	140		10			0
Expected Lifetime (if endurance $\sim 5 \times 10^6$)				5 The overa	10 Il write dis	15 tributior	n of	
, 35 (5×10	$^{6})/(5 \times 10^{5}) \approx 10^{6}$		R	RAM crossb	Dars	101		
p. 25							NI	∦– с

- Long Live TIME: *improve the training lifetime* [DAC 2018]
 - SGS: Structured Gradient Sparsification

Two benefits: Structured Weight Updating Less Sorting Operations Less Sorting Operations O(nlogk)->O(n)

- Long Live TIME: *improve the training lifetime* [DAC 2018]
 - SGS: Structured Gradient Sparsification
 - ARS: Aging-aware Row Swapping

- Long Live TIME: *improve the training lifetime* [DAC 2018]
 - SGS: Structured Gradient Sparsification
 - ARS: Aging-aware Row Swapping
 - SGS-ARS Training Framework

p.

• Results of Long Live TIME [DAC 2018]

– Achieve 356x longer lifetime in the training task of ResNet-50 on ImageNet

		Classification Accuracy									
Model Dataset	Dataset	SGS		Baseline		Sparsity of SCS	#Writes		Lifetime Extension		
	Dataset	Top-1	Top-5	Top-1	Top-5	sparsity of SOS	SGS-ARS	Baseline	SGS-AR	S FT-Train [17]	
VGG-16 Cifar10	91.0%		02 5%		00.7%	480	78200	160×	15~		
	Charlo	(-1.5%)	-	92.5%	-	33.170	409	78200	100	15×	
ResNet-20 Cifar10	91.7%		01 7%		00.0%	316	64124	177~			
	Charlo	(+0.0%)	-	91.770	-	99.970	510	04124	1//~	-	
ResNet-50 ImageN	ImageNet	75.1%	92.4%	76.1%	02.0%	99.8%	1264	450450	356~		
	imagervet	(-1.0%)	(-0.5%)	10.1%	170 92.970				330×	-	6

- An RRAM-based computing system (RCS) provides a promising solution for neuromorphic computing
- RCS is vulnerable to faults
 - RCS contains 3-level faults: device, circuit, and system
 - Testing and fault-tolerant designs are important for RCS
 - Promising solutions have recently developed for testing and fault tolerance in RCS
- Next steps: Better understanding of the physics of defects and the impact of faults on circuit operation

[1] B. Li, et al, ICE: inline calibration for memristor crossbar-based computing engine, in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2014, pp.1-4.

- [2] P. Gu, et al, Technological Exploration of RRAM Crossbar Array For Matrix-Vector Multiplication, in Proceedings of the 20th Asia and South Pacific Design Automation Conference (ASP-DAC), 2015, pp.106-111.
- [3] L. Xia, et al, Technological Exploration of RRAM Crossbar Array for Matrix-Vector Multiplication, in Journal of Computer Science and Technology (JCST), vol.31, No.1, 2016, pp.3-19.
- [4] W. Huangfu, et al, Computation-Oriented Fault-Tolerance Schemes for RRAM Computing Systems, in Proceedings of the 22nd Asia and South Pacific Design Automation Conference (ASP-DAC), 2017.
- [5] L. Xia, et al, Fault-Tolerant Training with On-Line Fault Detection for RRAM-Based Neural Computing Systems, in Design Automation Conference (DAC), 2017.
- [6] M. Cheng, et al, TIME: A Training-in-memory Architecture for Memristor-based Deep Neural Network , in Design Automation Conference (DAC), 2017, pp.26:1-26:6.

[7] M. Liu, et al, Fault Tolerance for RRAM-Based Matrix Operations, to appear in International Test Conference (ITC), 2018.

[8] J. Lin, et al, Rescuing Memristor-based Computing with Non-linear Resistance Levels, in Proceedings of the Design, Automation & Test in Europe Conference & Exhibition (DATE), 2018.

[9] Y. Cai, et al, Long Live TIME: Improving Lifetime for Training-In-Memory Engines by Structured Gradient Sparsification, in Design Automation Conference (DAC), 2018.

[10] L. Xia, et al, Stuck-at Fault Tolerance in RRAM Computing Systems, in IEEE Journal on Emerging and Selected Topics in Circuits and Systems (JETCAS), vol.8, No.1, 2018, pp.102-115.

[11] M. Cheng, et al, TIME: A Training-in-memory Architecture for RRAM-based Deep Neural Networks , to appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2019.

[12] L. Xia, et al, Fault-Tolerant Training Enabled by On-Line Fault Detection for RRAM-Based Neural Computing System, to appear in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems (TCAD), 2019.

Thanks for your attention

