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‘% Neural Network Accelerators

e The energy efficiency of existing Neural Network accelerators is
limited at ~10TOPs/W (i.e. 0.1pJ/OP)

— The gap between brain (500TOPs/W) and accelerators is more than 50x
Neural network accelerator comparison
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https://nicsefc.ee.tsinghua.edu.cn/projects/neural-network-accelerator/

e Large data movements cause high energy consumption in CNN

— The data transfer in GPU consumes 2 orders of magnitude more energy
than a floating-point operation [Han S, et al. ISCA’ 16]

p. 4
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' RRAM-based Computing System (RCS)

e RRAM and Processing-In-Memory provide alternative solutions to
realize better implementation of CNN

Nonvolatile RRAM-based
RRAM Device RRAM Crossbar Computing System
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{@\% Representative RCS Design
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RRAM :
.. Function Performance Ref.
Precision
14.8x Throughput and 4.4x Energy .
ISAAC 2 bits CNN Inference Efficiency A ST:EZ?l’GEt al
(Compared with DaDianNao)
2360x Speedup and 895x Energy P Chi et al
PRIME 4 bits CNN Inference Efficiency e
(Compared with DianNao)
42.45x Speedup and 7.17x Energy
PipelLayer 5~6 bits CNN Infe_re_nce Efficiency - iopncg/;,i;al'
and Training (Compared with GPU)
CNN: 1.3x Speedup and 19.6x Energy
CNN/DRL Efficien
. c.e &y . M. Cheng, et al.
TIME 4 bits Inference (Compared with DaDianNao) TCAD"18
and Training DRL: 126x Energy Efficiency
(Compared with GPU)
CNN: 14.8ns/MAC W. Chen. et al
NTHU Chip 1 bit Binary DNN/CNN FCN: 15.6ns/MAC sceis
(LeNet-5 @ MNSIM)
p. 6
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! RCS Faults

e The general RCS faults mean RRAM device faults and other non-
ideal factors which will cause computation deviation

. . . \
Dewce—J Stuck-At-Fault (SAF) [ Circuit- J e Wire Resistance
Level N . Level
e Limited Endurance e |[R-drop
e State Drift Problem ® Sneak Path
® Resistance Variation N
e Non-linear Resistance [System—
- Level J e Unbalanced Writing
Distribution |

e RCS faults make the CNN computing inaccurate and the system

unreliable

Yield Ideal 95% 90% 80%

Accuracy 97.8% 26.7~ 155~  10.6~ 0
60.4% 38.6% 28.0%

Reduction - >37% >59% >69%

—de=Case with 10% initial hard
faults & limited endurnace
Case with 30% initial hard
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¢ Fault Tolerance in RCS

e According to the type of RCS faults, we have proposed corresponding
fault tolerance methods to rescue the computation accuracy and
reliability of RCS. RRAM-based

Computing System
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@) Overview of RRAM Device Faults

O\ %
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e Hard / Soft: Resistance Unchangeable / Changeable
e Static / Dynamic: Generated during Fabrication / Read-and-Write

Dynamic Up to 30% ]
Resistance
4 ST Write Variation Deviation
106~108 for \> Endurance
Multi-level Write Disturbance Resistance
Device Limitation Drifting
(L Read Disturbance

\ _/

Hard Soft
4 Fabrication
Fabrication Variation
[ >30% for Defect Non-linear Gpﬁ?frvinl
RRAM Array Y Distribution u C;ﬁ ©
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@) Overview of RRAM Device Faults

e Fault-tolerance methods for RRAM device faults

Our Solution:

TCAD 19-1

Hard

DAC17-1 |

Our Solution 1:
ASPDAC 17

JETCAS 18

Our Solution 2:

ITC 18

™

~

Endurance

Limitation

/

Fabrication
Defect

Static

Dynamic

~

Write Variation

Our Solution:
DAC 17-2

TCAD 19-2

Write Disturbance

Read Disturbance

Our Solution:
DATE 14

Fabrication
Variation

Soft

Non-linear

k Distribution

Our Solution:
DATE 18

NS



““\\\\““.
& 2 ..'.
5% Sah)
g, A/ .
ge zy u
%3 Hy
A A &
G % &4 un
e £ 5
NN oy
'n.. * 1952+ % &7
.‘\\\\\\\“

e Stuck-At-Faults (SAFs): the resistance states cannot be changed

e SAFs cause significant accuracy loss of neuromorphic computing
— The recognition accuracy of the MNIST drops to 17.75% @ 20% SAFs

B A Yield Ideal 95% 90%  80%
ey Accuracy 97.8% 26.7~ 155~ 10.6~
b 60.4% 38.6% _ 28.0%

Shiiniie :
L Reduction - >37% >59%  >69%
Stuck-at-0 (black)
[C. Chen, IEEE Trans.
Computers 2015]
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Q) Fault Tolerance Method for SAF

e SAF tolerant framework contains two parts:

— Fault detection: identify the SAF position

— Fault tolerance: restore the accuracy

|

Stuck-at-0 (black)
[C. Chen, IEEE Trans.

Computers 2015]

->[ Fault Detection ]—

Voltage-Comparison Method
[L. Xia, et al. DAC 17 & TCAD 19]

p.13

->[ Fault Tolerance ]—

_,[ Extended ABFT ]
[M. Liu, et al. ITC’18]

_,[ Redundancy Schemes ]
[L. Xia, et al. JETCAS’18]

Algorithm Retraining and
Remapping
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e \oltage comparison method [DAC 2017 & TCAD 2019]

— Speed up detection by more than 14X compared with sneak-path technique

Read . . X X
Write X |
. Re_afi : * Recover X
original data
value
| X X|X
X
X
e X-ABFT [ITC 2018] X

— ldentify the faulty column: add two checksum columns

— ldentify the faulty row: apply multiple test input vectors

1.500 1301

1.000

Non-weighted Weighted G Grv o 0.500
chec&i’sum chesiksum » (1'1) (1‘2) """ o 3% f Ity cell 5% faulty cell
il ! % faulty cells % faulty cells
[1 11 :1] . Giz1) G(z,z) Or11) Orr2) ONo Test ® X-ABFT Msneak path
1 1 (1 & 1) (1 x1 a 2x 1) 1 2 3 :r4: G G 0 'U ----- (a) Comparison of time redundancy
1 0 (140) (1x14+2x0) R R SO BRI t21) e o, i e —
: é O0+1) (1x0+2x1) Ga @)_ o \“’ g - . s
( :) (1 i +I2'>‘(‘§i) Test input vectors ~ RRAM crossbar matrix Test output matrix Z:%ZZ &
SAO 3% faulty cells 5% faulty cells
p. 14 SNo Test mX-ABFT W sneak path

(b) Comparison of recoenition accuracy



SAF Tolerance: Restore the Accuracy

e Computation-oriented redundancy scheme [ASPDAC 2017 & JETCAS 2018]

— Mapping algorithm with inner fault-tolerant ability when using redundant
crossbars and independent redundant columns

e Improve the accuracy from 25% to 96% w/ 10% SAF @ MNIST

wodues smabamriomot | /et Mocuies RX:R-ENERGY RELATION IRC:R-ENERGY RELATION
ructure of the MNIST NN this paper) ,/ \ ‘50 \ 1”
_ =Fal m o [O1%SAFS | ,m ~0-1% SAFs
2] mput =g — ‘ 8 |-0-5%SAFs 10 |-0-5% SAFs
£ | Network = & [—' 030 A to%sArs| T T 216 |-o-10% SAFs
3D —.5 ;
g - B rrmirry B W 300 1.0-20% SAFs [~~~y gm ~0-20% SAFs |~~~
§F I 3 || | g, Comen) T =
{=2 ‘_’E.‘- Mat = Matriv Lj 111 R © R g 10 F---m ==
§* [~ Output el ¥ \ [ g 120 v
5. [ Network ADC ADcC| Rl e R S ——
% z’1 ! 5 S
2 2 100 2 1000
"~ |—l—' 0 2 ‘ 6 8 0 2 ‘ 6 8
o~ Redundant Rate (R) Redundant Rate (R)

Proposed Redundant Circuit

RX IRC

Original RRAM Crossbar [ Original RRAM Crossbar !

Hardware details of o
II Independent Redundan t Colamn

(a)
RX:Energy-Accuracy Trade-Off

(b)
IRC:Energy-Accuracy Trade-Off

100 150 200 250 300 350 400
Normalized Energy (%)

(c)

120 140 160 180
Normalized Energy (%)

(d)
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: Device Fault 2: Limited Endurance

's

e The write endurance of RRAM is limited
— The typical endurance of a multi-level RRAM cell ranges from 106 to 108

— Writing RRAM over the endurance may lead to SAF

e SAF caused by limited endurance will hurt training performance

(Yo]
o

(0]
o

—d-Case with 10% initial hard

faults & limited endurnace
—@-Case with 30% initial hard

faults & limited endurnace
—4-|deal case (no faults)

a N
o O

Accuracy of Cifar10 (%)

o

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

p. 16 Number of Training Iterations (x106) NIES



: Fault Tolerance Method for Limited Endurance

e Fault-tolerant training and remapping [DAC 2017-1 & TCAD 2019-1]
— Use a threshold-training method to reduce the write times

— Use a re-mapping scheme: map pruned network value to Stuck-At-0 cells
e Improve the accuracy from 37% to 83% @ Cifar-10

Re-mapping SoNE N
“4 :"b: ::.5:5{; :ﬁ“5 : — 100
Re-ordering 0 s O - 80
t Fault-tolerant network S
>
o
l S0 Mg
3 v
RS 8 ¥
AR, RREOR . ’
, Weight 0 05 1 15 2 25 3 35 45 5
: Updating Number of Training Iterations (x105)
W‘zz % x x % % ~4-|deal Case (No Faults) Fault-tolerant Method with Threshold Training
" ~#=0riginal Method Entire Fault-tolerant Method
Faulty RRAM Array (a) Entire-CNN case
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Device Fault 3: State Drifting Problem

"o State drifting: Read operations also change the RRAM resistance
slowly

e State drifting causes a decline of RCS’s performance

e |CE: Inline Calibration for Memristor Crossbar-based Computing
Engine [DATE 2014]

— Periodically interrupt-and-benchmark (1&B) RCS
— Minimize the negative impact of the I&B operation on system performance

e Achieves a calibration efficiency of 91.18% on average, improving
21.77% compared to the one with a constant calibration period

— P'”“ B v, T —— —

L 06 V; Digital

3 —— Ve - - -

© Calibration Unit
: [ . .

E 95 gk/(pos) gk](neg) ADC
c Memristor
294 R Crossbar-based
§° Computing Engine
9 93 l

o Voi Analog

| | | |
920 5 10 15 20 25 30 35 40 45 50

Operation Time (s) N I {t S



. Device Fault 4: Resistance Variation

e Resistance variation: the actual change of RRAM resistance is
different from the target AR, cqi ~ N(ARuccurate, 0.09R)

e Resistance variation makes write operation inaccurate

e Variability-free Tuning Scheme [DAC 2017-2 & TCAD 2019-2]

— Use ideal value and variance of RRAM model for tuning w/ 30 principle

e The energy efficiency is improved 2.28x on average, 2.29x at most

compared with existing tuning scheme

Algorithm 2: Varialibity-free tuning scheme 1o

Input: Current resistance of RRAM Reyrrent, target resistance range
Ritarget, target resistance range €, change of resistance 6 R
Output: Rcurrent "

while € > a‘bS(Rcurr‘ent - Rturget) do 10’

1
2 AR?‘EG( ~ N(ARG(:(:urat(z, OOQR)

3 Produce the AR,¢q; according to N(ARaccurate — 30,0.09R)
4 Obtain V)5 by lookup table based on RRAM
5

6

7

obtain the Rcurre-nt ®»
o
ARaccusrate = Raccu'ratc - Rta rget 8

8 end
9 return Reyrrent

Energy Efficiency

T ™ -y ™

T T
I TIME without variability free method |

1 TIME with variability free method |1
E

E

L1l

CNN1 CNN2 MLP1 MLP2 MLP3 DoReFa
(a)
Speed

Use Vpyise to change the resistance of RRAM o b

T
- TIME without variability free method
1 TIME with variability free method

el 111

CNN1 CNN2 MLP1 MLP2 MLP3 DoReFa
(b)



Q) Device Fault 5: Nonlinear Resistance Distribution

e The actual fabricated multi-level devices show the distribution of
resistance level is not linear

— Nonlinear resistance distribution causes high computing RMSE
e Computation accuracy recovery framework [DATE 2018]

— Applying non-linear voltage, retraining, and designing new sensing structure

e Devices with non-linear conductance levels can achieve the same
accuracy as the ideal linear devices, reduce 99% RMSE

Distribution of  / N‘s’:r;;';ear
. Ck + &, Resistance Levels /Power Distribution (x?) Structu?e
0.8 gk =4 Ck“*
0.7 k Re-train .
0.6 Ca - Non-linear C.h'p.
: Exponential Weiaht Fabrication
0.5 [Distribution (a9 SIS 3

Normalization Conductance

—Exponential Model Parameter ReS|sta_ nce
~=Power Model Matrix Mapplng
Linear Model

v

o L2 - Non-linear Comg::(:ir:\%;lth
0 . Conduct ”Lw]‘?‘ 1 Linear Distribution [Ia] Lol (& 1o = :
. oneuenee L_LS with Deviation Device
0. 20 Non-linear resistance The overall accuracy recovery -

distribution framework M‘”: S
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;. Circuit-level Faults and Non-ideal Factors

e Wire resistances cause IR drop problem, resulting in accuracy loss in
large crossbars

e Choices of load resistor and RRAM resistance range also influence
the computation accuracy

10 S
() - A —A- Rlnh-rrnmu-m - 0 é ]-0
st -©-16 nm Tech. Node S 9 8
. | | #-22 nm Tech. Node ch 8 "
NN 7 —+-32 nm Tech. Node B/Q/Q/Q/O 7 6
D e 5 6
s .l \ N =
é 0 A __o-* L.E 5 4
S 4 B O = o 4
|
= 3r ® 2
=L O 2
2 ‘CIZ 1
1t 2 15 0
() 1 1 1 1 ) § 1 ; 2- 3> 4 s o - - - - = . ; - 1 2 3 Q)
0 20 40 60 80 10( 5678 91017 07 gu
Crossbar Size Ry (kQ)
Error rate under different Error rate under different load
crossbar sizes resistances and RRAM range

p. 22 Mﬁg



! Fault Tolerance Method for Circuits Fault

e Technological exploration of RRAM crossbar to overcome the circuit-
level faults and non-ideal factors [ASPDAC 2015 & JCST 2016]
e Results of Technological exploration:

— Achieve 10.98% improvement of recognition accuracy on the MNIST
dataset and 26.4% energy savings compared with previous work

— More than 84.4% power saving can be achieved at the cost of little
accuracy reduction

RRAM Model
i
i
i
i

Table 2. Power Saving with a Restricted Accuracy

perease Threshold (Initial Ron = 500 Q)
[ : T - }H Technology Accuracy Optimal Initial Optimal Power
( B } : : Node Threshold RonN Power Power  Savings
= e ) |2 (nm) (%) (kQ)  (mW) (mW) (%)
[ ] 16 80 17.0 2.10 0.340 83.7
22 80 16.3 216  0.347 839
28 80 16.0 2.19 0.351 84.0
36 80 16.0 2.26 0.353 84.4
22 85 5.0 2.16 0.611 T1.7

NIS
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e The lifetime of existing training RCS is short

— Reason |: RRAM endurance is limited (e.g., 10°~108), but the number of
iteration and RRAM writing in training is large

— Reason Il: The weight update is unbalanced

400
ECEEETICTE -
LeNet-5 10,000 MNIST 40 300
60
ResNet-20 64,000 CIFAR-10 80 200
VGG-11 78,200 CIFAR-10 100 o0
120
ResNet-50 500,000 ImageNet 140 o
d Lifetime (if end ~ 5x10° 2 v 1
Expected Li e’zlme(l er; urance. X ) The overall write distribution of
(5%109)/(5%10°) ~|10 times | RRAM crossbars
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e Long Live TIME: improve the training lifetime [DAC 2018]
— SGS: Structured Gradient Sparsification

i Element-wise . .

gf;}j‘;,gfb? + X G(ncab) Absolute Gradient Map Max Absolute Gradient Map Max
: 0.04 0.010.030.030.040.02 0.040.010.02 0.04

st -Gy 0. 0.220.270.18 *** |0.170.210.26
: 0.11/0.130.080.090.12 0.090.160.09 0.16 0.110.130.040.040.12 0.090.16 0.05 0.16

D !
! : = [0.070.140.16 0.130.3 - - - |0.080.070.0d 0.18 = ]0.070.140.140.130.1§ - - - |0.040.070.09 0.18
= =
E & |0-020.040.080.090.01 0.030.01{0.01 0.06 & |0-020.040.080.090.01 0.030.040.01 0.06
‘ < 0.06/0.130.160.130.04 . .. [0.090.040.11 0.13 0.040.130.10.130.04 . . . [0.090.040.11 0.13
Chg{md-v;ise e 0.17/0.240.090.160.17 0.080.090.11 0.24 0.170.240.090.140.17 0.040.090.11 0.24
Gl hES
—— N ——) —— N —
(a) Structured Gradient Sparsity (SGS) (b) Row-wise (c) Element-wise

Two benefits: Structured Weight Updating Convolut.ion kzernel: kzg * N
Less Sorting Operations Complexity: k?C * N + k*C
O(nlogk)->0(n)

p. 26 M}I‘Eg



@ Fault Tolerance Method for Training RCS

e Long Live TIME: improve the training lifetime [DAC 2018]
— SGS: Structured Gradient Sparsification

— ARS: Aging-aware Row Swapping

H#Write

103
2 | Ow O Counter Memory Requirement:

k%C * B, B = log, MaxIter

127
94
10

. Two hyper-parameters.
= ARS Interval: ST

45
132 Number of swapped rows: R

p. 27 Mﬂfg



. Fault Tolerance Method for Training RCS

e Long Live TIME: improve the training lifetime [DAC 2018]
— SGS: Structured Gradient Sparsification
— ARS: Aging-aware Row Swapping

— SGS-ARS Training Framework
/ #lter /<

4

No

#iter=#lter+1

] ] EREEE
..I==
’ SGS
[ aveis ] Loss Function
Backward Elements k*k*C>128
Prggaﬁon ..-.-
~A [ | [ [ [ ]
Row-wise
B
w.r.t weight . -
p. 28 v >



Fault Tolerance Method for Training RCS

e Results of Long Live TIME [DAC 2018]

— Achieve 356x longer lifetime in the training task of ResNet-50 on ImageNet

Maximum #writes when Training VGG-16 iase -
5 y : Qutliers
= ' ! S E—— — 3000 -| M Conventional GS
............................... l ~10X ~ W SGS-ARS = ljl ]
10° 500 ;
8 . = b T P P ey ST = g
e 5 400/ :
A e s e rnsiro—srrnspee 5 | ~20x I |
E = & W0 ;_ "
B2’ I ; :
4 r 200+ .
s «--Dense Traning i I | | |
it ~ Conventional GS (fc.0) -
~ Conventional GS (conv5.2) 100 - , — 2
—SGS-ARS (fc.0) | " Hyy bbb I || I || || [
—SGS-ARS (conv5.2) o 1T L' IT AT Ip 1g ¢ 1o [4 2 [ [o #1 4 Wy|| B Ouim
100 1l é :; 4 5 é ; \.\‘\\ 4\:\ :,\\ i\’.\' i\\\ 33\ :;\’ \‘)..\\ :\‘.\ 3:.\' \.(“Q :D\ 1;" 9\ \L\ \S/
Traingin Iteration <10% PR AT R e B R A
Box-plot figure: indicating the balance of # write
Classification Accuracy ) o )
SGS Baseline ) #Writes Lifetime Extension
Model Dataset S ty of SGS
© A8 1 Top-1  Top-s | Top-1  Top-s || “PA™Y° SGS-ARS Baseline | SGS-ARS FI-Train [17]
VGG-16 Cifarl0 (9 ll 222) . 92.5% - 99.7% 489 78200 160x 15%
ResNet-20 | Cifarl0 91.7% - 91.7% - 99.9% 316 64124 177x -
(+0.0%) ’ '
75.1%  92.4%
- 76.1% . 8% 4 -
p. ResNet-50 | ImageNet 1.0%)  (-0.5%) 6.1 92.9% 99.8 1264 50450 356x ré—
-
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e An RRAM-based computing system (RCS) provides a
promising solution for neuromorphic computing

e RCS is vulnerable to faults
— RCS contains 3-level faults: device, circuit, and system
— Testing and fault-tolerant designs are important for RCS

— Promising solutions have recently developed for testing and fault
tolerance in RCS

e Next steps: Better understanding of the physics of defects
and the impact of faults on circuit operation

p. 30
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