ASP-DAC 2019

Cell Division: Weight Bit-Width Reduction Technique for Convolutional Neural Network Hardware Accelerators

<u>Hanmin Park</u>, Kiyoung Choi

Neural Processing Research Center Design Automation Laboratory

Seoul National University

Outline

1. Motivation

 Mismatch b/w two research communities: CNN inference bit-width reduction CNN inference HW accelerator design

2. Elaboration

 Cell division technique applied to: Fully connected layer Convolutional layer

3. Discussion

- How to suppress the number of new neurons
- Applicability of cell division technique to recent researches
- 4. Conclusion

Motivation

- Data type for CNN inference HW accelerators
 - Fixed-point format than floating-point format
- Design parameters of fixed-point format

- ulp (unit in the last place): Once decided, it is implicitly assumed throughout the computation.
- BW (bit-width): Largely affects chip-area, power, etc.
 - In trade-off relation w/ CNN accuracy.
 - Reduction efforts in two research communities.

Motivation

CNN inference bit-width reduction

- Inter-network BW opt (P. Judd et al., arXiv 2015)
 - AlexNet on ImageNet:
 - 10-bit weights
 - GooLeNet on ImageNet:
 - 9-bit weights
- Intra-network BW opt (D. Lin et al., ICML 2016)
 - AlexNet-like CNN on ImageNet (5 conv layers):
 - β , β 5, β 4, β 5, and β 4 bit weights

CNN inference HW accelerator design

- 16-bit weights:
 - DaDianNao
 - Eyeriss
 - Stripes etc.
- 8-bit weights:
 - TPU v1

Very (too) Pessimistic!

Motivation

CNN inference bit-width reduction

- Inter-network BW opt (P. Judd et al., arXiv 2015)
 - AlexNet on ImageNet:
 - 10-bit weights
 - GooLeNet on Imag
 - 9-bit weights
- Intra-network BW (D. Lin et al., ICML 2016)
 - AlexNet-like CNN on ImageNet (5 conv layers):
 - β , $\beta 5$, $\beta 4$, $\beta 5$, and $\beta 4$ bit weights

ullet

CNN inference HW accelerator design

- 16-bit weights:
 - DaDianNao
 - Eyeriss
 - Strines

We want to:

- Alleviate the pessimism.
- Make CNNs executable.

Very (too) Pessimistic!

Outline

1. Motivation

 Mismatch b/w two research communities: CNN inference bit-width reduction CNN inference HW accelerator design

2. Elaboration

 Cell division technique applied to: Fully connected layer Convolutional layer

3. Discussion

- How to suppress the number of new neurons
- Applicability of cell division technique to recent researches
- 4. Conclusion

Main Idea

• Start w/ a fixed-point quantized CNN:

float Wgt distribution of LeNet-5.conv1.

• Cell division technique:

A quantization result (w/ 0.3 %p test accuracy drop):

- (BW, ulp) = (7, 2⁻⁶)
- Range = [-1, 1)

Let's assume we only have a HW accelerator that assumes 6-bit weights.

- → Not executable w/o CNN accuracy drop.
- $a_{in} \cdot w = a_{in} \cdot \sum_i w'_i = \sum_i a_{in} \cdot w'_i$ where $w \in [-1,1)$ and $w' \in [-0.5, 0.5)$.
- We target no specific HW support for this technique.

Cell Division for Fully Connected Layer

 $1010 \cdot a_{in} - b$

 $\begin{bmatrix} 2 & -4 \\ -2 & -6 \end{bmatrix}$

 $\begin{bmatrix} 2 & -4 \\ -2 & -4 \\ 1 & 3 \end{bmatrix}$

Cell Division for Fully Connected Layer

Activation duplication layer

- Part of the act-dup layer is the identity matrix.
- No HW modification req (w/ performance overhead).
- Biases of the neurons in the act-dup layer are all zero.

Cell Division for Convolutional Layer

Cell Division for Convolutional Layer

Channel fusing filters

- Part of the chn-fusing fltrs is the identify filters.
- No HW modification req (w/ performance overhead).
- Biases of the neurons in the chn-fusing fltrs are all zero.

Experimental Results

The Best Fixed-Point Quantization for Each CNN LE: LSB's Exp (log₂ ulp) BW: Bit-Width

LeNet-	LE	-4	-4	-3													
300-100	BW	4	4	4													
LeNet-5	LE	-6	-4	-5	-5												
	BW	7	4	3	5												
AlexNet	LE	-8	-9	-9-	-10	-9	-9	-9	-9								
	BW	8	9	9	10	9	6	7	7								
VGG-16	LE	-7	-6	-8	-8	-8	-9	-8	-8	-8	-9	-9	-9	-9	-9	-8	-8
	BW	8	6	8	8	9	9	8	8	8	9	8	8	9	5	5	5

Weight storage requirements according to cell-division's target bit-widths (normalized to those of 16-bit fixed-point quantized CNNs).

Outline

1. Motivation

 Mismatch b/w two research communities: CNN inference bit-width reduction CNN inference HW accelerator design

2. Elaboration

 Cell division technique applied to: Fully connected layer Convolutional layer

3. Discussion

- How to suppress the number of new neurons
- Applicability of cell division technique to recent researches

4. Conclusion

Contents NOT in the Paper

FAQs

How to Suppress the Number of New Neurons

Weight Distribution

 Weight distribution of LeNet-5.conv1 (LE, BW) = (-6, 7)

 But this weight distribution characteristic per se is not enough!

The second reasoning is about my technique for further reducing # new neurons.

How to Suppress the Number of New Neurons

One Cell Div w/ Multiple Synapse Divs

Applicability to Recent Researches

• "Why are you referring to ancient (2015, 2016) quantization schemes?"

"AlexNet on ImageNet is successful w/ only 3-bit wgts."

- We wanted our approach to be as generic as possible.
 Basic
 - Float training first \rightarrow Fixed-point quantization, next.
 - Advanced
 - Fixed-point quantization during training.
 - Mixed usage of float & fixed-point (C. Leng et al., AAAI 2018).
- TMI: We were very strict about DNN accuracy drop due to fixed-point quantization in the paper.
 - 0.1 % training accuracy & 0.3 % test accuracy drop.

Applicability to Recent Researches

- Weight quantization levels (3 bits per weight):
 - $\circ \ \{-2, +2\} \rightarrow \{-2, -1, 0, +1, +2\}$
 - ° $\{-4, +4\}$ → $\{-4, -2, -1, 0, +1, +2, +4\}$

Uses shift operations instead of multiplications.

- W/ layer-wise floating-point scaling factors
- Mathematical formulation as a mixed integer programs (MIP) enables:

	Accuracy	{-2, +2}	{-4, +4}	Full Precision
AlexNet	Top-1	0.592	0.600	0.600
	Top-5	0.818	0.822	0.824

- Note that our technique can be applied here.
 - ° $\{-4, +4\}$ → $\{-2, +2\}$ w/ more accuracy.
 - Or no shift operations required at all.

Outline

1. Motivation

 Mismatch b/w two research communities: CNN inference bit-width reduction CNN inference HW accelerator design

2. Elaboration

 Cell division technique applied to: Fully connected layer Convolutional layer

3. Discussion

- How to suppress # new neurons
- Applicability of cell division technique to recent researches

4. Conclusion

Conclusion

- We proposed the cell division technique, which:
 - Can reduce the fixed-point bit-width of CNN weights w/o any accuracy change.
- We also proposed the activation duplication layer & channel fusing filters for legacy CNN inference HW accelerators.
- The cell division technique enables:
 - Alleviating the pessimism behind the weight bit-width selection when designing CNN inference HW accelerators.
 - Making CNNs executable on CNN inference HW accelerator which assumes narrower weight bit-width.

THANK YOU

