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ØBackground and Motivations

§ Introduction: Binarized Neural Networks (BNNs)
§ Problems: overflow and deviation

ØOur woks: Simulate-the-hardware
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Background and Motivations
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ØAdvantages of Binarized Neural Networks (BNNs)
§ Reduce storage requirement
§ Multiply-free computation

• Increase calculating speed
• Reduce chip area



Problems: Overflow
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Problems: Deviation
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Problems: Deviation
ØRelation of overflow/rounding and deviation

§ Overflow
• Limited-precision
• Save energy and storage
• Drop accuracy

§ Deviation
• caused by overflow
• must be eliminated
• simulate the overflow
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Our works
ØOverflow containment

§ Hardware-friendly normalization layer that is at least 1.5X 
faster than Batch Normalization

§ Aggregated convolutional operation

Ø • Overflow/rounding simulation
§ Simulate the overflow/rounding with GPU

• 100X faster than the vanilla method
• 80.8% slower than the original method

§ A new regularization term
• The accuracy of our method is 12% higher compared with the past

method.
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Overflow Containing
ØNormalization Layer Design

§ For containing overflow
• Division
• Support the Aggregated Convolutional Operation

§ For efficiency
• The sigma equals 2 to the power of n
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Overflow Containing
ØAggregated Convolutional Operation 
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Overflow Containing
ØAggregated Convolutional Operation 

12

Hadamard

c

Feature 
maps

h

w

Kernel Output

Batch N
orm

.

Activation

Add

Conv



Overflow Containing
ØAggregated Convolutional Operation 
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Overflow Containing
ØAggregated Convolutional Operation 
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Overflow Containing
ØAggregated Convolutional Operation

§ Suppose that !’ = 4, μ = 0, G = 4 and the convolutional 

layer uses an 8-bit adder that the output range is [-128, 
127].

§ Floating-point

• Conv(X) = 512, ReLU(512) = 512, and Norm(512) = 128

§ Original Convolution with 8-bit adder

• Conv(X) = 127, ReLU(127) = 127, and Norm(127) = 31

§ Aggregated Convolution with 8-bit adder
• AConv(X) = 127/4+127/4+127/4+127/4 = 31+31+31+31 = 124 
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Overflow/Rounding Simulating
ØSimulating Overflow/Rounding

§ Pytorch, Caffe, and Tensorflow
§ Illustrate with a figure
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Regularization Term 
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Experimental Results
ØNormalization Layer

§ Drop a little of accuracy
§ Improves tremendous computational speed
§ Hardware-friendly 
§ Simpler architecture design 
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Experimental Results
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ØRegularization Term
§ AlexNet of BNN
§ Use the mentioned normalization layer 



Experimental Results
ØSimulating Overflow/Rounding

§ Batch size is 128 
§ Our method is 80.75% slower than the original method
§ The original almost cannot simulate overflow/rounding 
§ Our method is about 100X faster than the vanilla method 
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Experimental Results
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ØOverall Evaluation
§ Keywords Spotting with BNN-LSTM 
§ Dataset from Google AI
§ The affect of hidden cell number
§ The affect of keyword number



Summary
ØOur Work

§ A series of the methods to contain the overflow, simulate 
the overflow/rounding, and train accurate BNNs for low-
precision neural accelerators.

ØAuthors’ Hope
§ The work can inspire the intelligent specialized 

accelerators to achieve better performance.
ØMy Vision

§ Let edge devices be smarter
ØAcknowledgment
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