Simulate-the-hardware: Training Accurate
Binarized Neural Networks for Low-Precision

Neural Accelerators

Jiajun Li, Ying Wang, Bosheng Liu, Yinhe Han, and Xiaowei Li

Cyber Computing Laboratory,
State Key Laboratory of Computer Architecture,
Institute of Computing Technology,
Chinese Academy of Sciences

ASP-DAC’ 2019, Tokyo, Japan
January 2018

» Background and Motivations
= |Introduction: Binarized Neural Networks (BNNs)
= Problems: overflow and deviation

» Our woks: Simulate-the-hardware
= Overflow Containing

= Overflow/Rounding Simulating
= BNNSs Training

» Experimental Results

» Conclusions

The part one

BACKGROUND & MOTIVATIONS

Background and Motivations

» Advantages of Binarized Neural Networks (BNNSs)

= Reduce storage requirement

= Multiply-free computation
* Increase calculating speed
* Reduce chip area

35

30 m Single float
m Half float

25 = 8bit

20 m Binarized

()]

15
10
. —

Storage

(@)

Problems: Overflow

Problems: Deviation

—————————————— \\——i——

Training & Simulator ‘\ /'

Tensorflow/Caffe =

cuBlas/Eigen

Problems: Deviation

» Relation of overflow/rounding and deviation

= Overflow
* Limited-precision
- Save energy and storage
- Drop accuracy

= Deviation
- caused by overflow
* must be eliminated
 simulate the overflow

The part two

OUR WORKS

8

» Overflow containment
= Hardware-friendly normalization layer that is at least 1.5X
faster than Batch Normalization

= Aggregated convolutional operation

» » Qverflow/rounding simulation

= Simulate the overflow/rounding with GPU
« 100X faster than the vanilla method
* 80.8% slower than the original method

= A new regularization term

« The accuracy of our method is 12% higher compared with the past
method.

Overflow Containing

» Normalization Layer Design
= For containing overflow
* Division
« Support the Aggregated Convolutional Operation

= For efficiency
- The sigma equals 2 to the power of n

w
——
h{

I

|

Kernel each output has w-h-c additions

X —p

O-/

Norm(X) =

Conv

/ .
o = 2™ where n is natural number

10

Overflow Containing

» Aggregated Convolutional Operation

(1, x>1
r, x>0

ReLU(x) = HardTanh(z) =<¢ =z, —-1<z<1
0, =<0

| —1, r < —1

G
1
GP=>_ ~ y: y: Wi
g 1 J

1
GP — — GP >0
ACRrerv(T) = o'’ ~
0, otherwise
(1 Ll GP > 1
O—/ O—/ 1 O]-.,
ACur(z)={ GP-L _—<gP<=
L% o | o
T T o o <GP

11

Overflow Containing

» Aggregated Convolutional Operation

—

Hadamard —»

uoIeAndy
WLION yoleg

0000 0000 0000 oooa
0000 0000 0000 oooao

N—

12

(®))
=
=
©
i
-
o
O
S
O
1
)
>
O

» Aggregated Convolutional Operation

IIIIIIIIIIIIIIII

Output

o
o
<

PR

0000 0000 O00oo oooa
0000 0000 O0o0oo 0oooa

Hadamard —»

Groups

Kernel

13

Overflow Containing

» Aggregated Convolutional Operation

Aggregated Convolution

— —
L 0o
h { 00
oo J
oo
o0
Hadamard —» g g J\ Add
oo W/'
oo
oo J
oo }
...... oo
oo
Kernel Groups Output

14

Overflow Containing

» Aggregated Convolutional Operation

= Suppose that o’ =4, y =0, G =4 and the convolutional
layer uses an 8-bit adder that the output range is [-128,
127].
= Floating-point
« Conv(X) =512, ReLU(512) = 512, and Norm(512) = 128\/
= Original Convolution with 8-bit adder
« Conv(X) =127, ReLU(127) = 127, and Norm(127) = 31 x

= Aggregated Convolution with 8-bit adder
* AConv(X) =127/4+127/4+127/4+127/4 = 31+31+31+31 =124

15

Overflow/Rounding Simulating

» Simulating Overflow/Rounding
= Pytorch, Caffe, and Tensorflow
= |llustrate with a figure

asodsue.]

s

1onpoud piewepeH

Buipuno.1/MO|IaA0
Vol
9a.} Jappy

overflow/rounding

Regularization Term

J(W,b) = Loss Wb)+)\yyl‘yl‘ W(l)))

=1 i=1 j5=1

Ny M
J(W,b) = Loss(W,b) +)\TY7 (cos(WWig-l)) +1)

=1 i=1 j=1

'y

17

The part three

EXPERIMENTAL RESULTS

18

Experimental Results

» Normalization Layer
= Drop a little of accuracy
= |Improves tremendous computational speed
= Hardware-friendly
= Simpler architecture design

Table 1: Quantized Batch Normalization vs. Batch
Normalization.

Batch Norm. Our

Accuracy 82.32% 72.30%
FPS 4060.45 6097.35

19

Experimental Results

» Regularization Term

= AlexNet of BNN
= Use the mentioned normalization layer

Table 2: The comparison of two regularization terms.

Wei Tang et al. Our
Accuracy 64.55% 72.30%

20

Experimental Results

» Simulating Overflow/Rounding

= Batch size is 128
= Our method is 80.75% slower than the original method

= The original almost cannot simulate overflow/rounding
= Our method is about 100X faster than the vanilla method

Table 4: The time-consuming of matrix product.

Original Vanilla Our
Time consuming (s/batch) 1.6 840.5 8.3

21

Experimental Results

» Overall Evaluation
= Keywords Spotting with BNN-LSTM
= Dataset from Google Al
= The affect of hidden cell number
= The affect of keyword number

x©
(=]
I

3
=)
1

Accuracy

60 - -®- Binarized Neural Networks
50 F —— Floating-point Neural Networks 80 I ~Br (G Cdeneells
—&— 128 hidden cells
40 1]]]]] > 75 L I]]] >
20 40 60 80 100 120 5 10 15 20 25
Hidden Cell Number Keywords Number

22

» Our Work

= A series of the methods to contain the overflow, simulate
the overflow/rounding, and train accurate BNNs for low-
precision neural accelerators.

» Authors’ Hope

= The work can inspire the intelligent specialized
accelerators to achieve better performance.

» My Vision
= Let edge devices be smarter

» Acknowledgment

= Thanks for your coming and the anonymous referees for
their valuable comments and helpful suggestions.

23

Thank you
Q&A

