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» Background and Motivations
= |Introduction: Binarized Neural Networks (BNNs)
= Problems: overflow and deviation

» Our woks: Simulate-the-hardware
= Overflow Containing

= Overflow/Rounding Simulating
= BNNSs Training

» Experimental Results

» Conclusions
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Background and Motivations

» Advantages of Binarized Neural Networks (BNNSs)

= Reduce storage requirement

= Multiply-free computation
* Increase calculating speed
* Reduce chip area

35

30 m Single float
m Half float

25 = 8bit

20 m Binarized

()]

15
10
. —

Storage

(@)




Problems: Overflow




Problems: Deviation
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Problems: Deviation

» Relation of overflow/rounding and deviation

= Overflow
* Limited-precision
- Save energy and storage
- Drop accuracy

= Deviation
- caused by overflow
* must be eliminated
 simulate the overflow
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OUR WORKS
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» Overflow containment
= Hardware-friendly normalization layer that is at least 1.5X
faster than Batch Normalization

= Aggregated convolutional operation

» » Qverflow/rounding simulation

= Simulate the overflow/rounding with GPU
« 100X faster than the vanilla method
* 80.8% slower than the original method

= A new regularization term

« The accuracy of our method is 12% higher compared with the past
method.



Overflow Containing

» Normalization Layer Design
= For containing overflow
* Division
« Support the Aggregated Convolutional Operation

= For efficiency
- The sigma equals 2 to the power of n
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Overflow Containing

» Aggregated Convolutional Operation

(1, x>1
r, x>0

ReLU(x) = HardTanh(z) =<¢ =z, —-1<z<1
0, =<0

| —1, r < —1

G
1
GP=>_ ~ y: y: Wi
g 1 J

1
GP — — GP >0
ACRrerv(T) = o'’ ~
0, otherwise
(1 Ll GP > 1
O—/ O—/ 1 O]-.,
ACur(z)={ GP-L _—<gP<=
L% o | o
T T o o <GP

11



Overflow Containing

» Aggregated Convolutional Operation
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» Aggregated Convolutional Operation
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Overflow Containing

» Aggregated Convolutional Operation

Aggregated Convolution
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Overflow Containing

» Aggregated Convolutional Operation

= Suppose that o’ =4, y =0, G =4 and the convolutional
layer uses an 8-bit adder that the output range is [-128,
127].
= Floating-point
« Conv(X) =512, ReLU(512) = 512, and Norm(512) = 128\/
= Original Convolution with 8-bit adder
« Conv(X) =127, ReLU(127) = 127, and Norm(127) = 31 x

= Aggregated Convolution with 8-bit adder
* AConv(X) =127/4+127/4+127/4+127/4 = 31+31+31+31 =124
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Overflow/Rounding Simulating

» Simulating Overflow/Rounding
= Pytorch, Caffe, and Tensorflow
= |llustrate with a figure
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Regularization Term
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EXPERIMENTAL RESULTS
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Experimental Results

» Normalization Layer
= Drop a little of accuracy
= |Improves tremendous computational speed
= Hardware-friendly
= Simpler architecture design

Table 1: Quantized Batch Normalization vs. Batch
Normalization.

Batch Norm. Our

Accuracy 82.32% 72.30%
FPS 4060.45 6097.35
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Experimental Results

» Regularization Term

= AlexNet of BNN
= Use the mentioned normalization layer

Table 2: The comparison of two regularization terms.

Wei Tang et al. Our
Accuracy 64.55% 72.30%
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Experimental Results

» Simulating Overflow/Rounding

= Batch size is 128
= Our method is 80.75% slower than the original method

= The original almost cannot simulate overflow/rounding
= Our method is about 100X faster than the vanilla method

Table 4: The time-consuming of matrix product.

Original Vanilla Our
Time consuming (s/batch) 1.6 840.5 8.3
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Experimental Results

» Overall Evaluation
= Keywords Spotting with BNN-LSTM
= Dataset from Google Al
= The affect of hidden cell number
= The affect of keyword number
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» Our Work

= A series of the methods to contain the overflow, simulate
the overflow/rounding, and train accurate BNNs for low-
precision neural accelerators.

» Authors’ Hope

= The work can inspire the intelligent specialized
accelerators to achieve better performance.

» My Vision
= Let edge devices be smarter
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