SAADI: A SCALABLE ACCURACY APPROXIMATE DIVIDER FOR DYNAMIC ENERGY-QUALITY SCALING

Setareh Behroozi, Jingjie Li, Jackson Melchert, <u>Younghyun Kim</u>

24th Asia and South Pacific Design Automation Conference (ASP-DAC) Tokyo, Japan, January 22–24, 2019

HUMAN BRAIN VS. MACHINE BRAIN

10.012×9.9822=?

What?

10.012×9.9822 roughly?

100

Slow, but always efficient

10.012 apples per student9.9822 students per classHow many apples per class?

10.012×9.9822=?

99.9417864

10.012×9.9822

roughly?

99.9417864 What's

"roughly"?

Fast, but sometimes inefficient

If approximate results are good enough, can we do it efficiently?

APPROXIMATE COMPUTING

- Happy with good enough solution
- Maximize quality-per-effort, not quality
- Many applications are resilient to errors in underlying computing
 - Audio/video signal processing, machine learning, search and data mining

APPROXIMATE COMPUTING

Energy efficiency

- Simpler, faster, more efficient hardware and software
- More opportunities
 to improve energy
 efficiency and
 performance
- Improvedapplication-levelquality

DIVISION OPERATION

Capsule neural network (CapsNet)

Color quantization

Image division (difference detection)

DIVISION IS EXPENSIVE

VS

IDIV	9-25 cycles (32 bit)
IMUL	3 cycles (32 bit)

AMD 12h family

Area	1.35x to 3x
Delay	1.27x

Intel FPGA

Challenge: A hardware divider is a costly module

Exact results

Just good enough results

Approximate divider

ACCURACY REQUIREMENT

Application accuracy requirement varies over time

Dynamic quality configuration

Previous approx. dividers

SEERAD

R. Zendegani et al., SEERAD: A High Speed Yet Energy-Efficient Rounding-based Approximate Divider. In DATE 2016

TruncApp S. Vahdat et al., TruncApp: A Truncation-based Approximate Divider for Energy Efficient DSP Applications. In DATE 2017

AAXD

H. Jiang et al., Adaptive Approximation in Arithmetic Circuits: A Low-Power Unsigned Divider Design. In DATE 2018

Approximate accuracy is fixed at design time

PROPOSED APPROACH: SAADI

A Scalable Accuracy Approximate Divider for Dynamic Energy-Quality Scaling
 Key features

Approximate

Multiplicative

Dynamic quality configuration

8-bit SAADI for 32 bit division (NanGate 45nm CMOS)

92.5%-99.0% average accuracy 0.66-4.67 pJ energy consumption

32 bits precise SRT Radix-2 divider: 351 pJ

MULTIPLICATIVE DIVISION

Division

$$A = 2^{e_a} \times a \quad B = 2^{e_b} \times b$$

$$Q = \frac{A}{B}$$

$$= 2^{e_a - e_b} \times \frac{a}{b}$$

$$= 2^{e_a - e_b} \times a \times R(b)$$

Multiplicative division

$$A = 2^{e_a} \times a \quad B = 2^{e_b} \times b$$

Multiplier

$$Q = 2^{e_a - e_b} \times a \times R(b)$$

Divider

$$R(b) = \frac{1}{b}$$

Approximate Reciprocal

 $\tilde{R}(b)$

APPROXIMATE RECIPROCAL R(b)

$$x = b - 1$$

Tyler
$$x = b - 1$$
series $R(b) = \frac{1}{b} = \frac{1}{1+x} = \sum_{i=0}^{\infty} |x| = 1 + |x| + |x|^2 + |x|^3 + |x|^4 + \cdots$

Stop earlier

$$\tilde{R}_t(b) = \sum_{i=0}^t |x|^i = 1 + |x| + |x|^2 + |x|^3 + |x|^4 + \dots + |x|^t$$

Stop at cycle t-1 and $1 \le t \le n$ -1

$$Q = 2^{e_a - e_b} \times a \times \tilde{R}_t(b)$$

Runtime accuracy control for dynamic quality configuration

HARDWARE ARCHITECTURE

$$\tilde{R}_t(b) = 1 + |x| + |x|^2 + |x|^3 + |x|^4 + \dots + |x|^t$$

$$Q = a \times \tilde{R}_t(b) \times 2^{e_a - e_b}$$

Design time parameter: Multiplier width: n

Run time parameter: Number of cycles: t

HARDWARE UTILIZATION

SOURCES OF ERROR

 ϵ_1 Inputs A and B normalized to n bits

 $\tilde{\mathbf{E}}_{\mathbf{Z}}$ $\tilde{R}_{t}(b)$ is the sum of limited number of $|x|^{t}$ terms

 ϵ_3 Each $|x|^t$ computed by an approximate multiplier

 $\tilde{R}_t(b)$ truncated from n+2 bits to n bits

SOURCE OF ERROR

SAADI EXAMPLE

$$\begin{array}{c} B = 11 \\ b = 0.68750 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.74219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.24219 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.0269 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 0.0269 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 1.40625 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.0000 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.0000 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.0000 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.0000 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \hspace \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}{c} A = 190 \\ a = 17.1250 \end{array} \qquad \begin{array}$$

EXPERIMENTAL RESULTS: ACCURACY

ACCURACY

Average number of iterations for varying *n* and *t*

MAE for varying n and t

AREA, POWER, AND DELAY

4

X

×

×

×

Bit width n(bit)
Area (µm²)
Delay (ns)
Power (mW)
Energy per cycle (pJ)

Target accuracy: 88%

Target accuracy: 99%

Target accuracy: 99.9%

Energy (pJ) Energy (pJ) Energy (pJ)

t

t

8 1,199 1,963 1.07 1.13 0.31 0.59 0.33 0.66 0.66 0.66 4.01 X ×

12 3,068 1.43 1.09 1.56 1.56 6.26 10.96

16

COLOR QUANTIZATION USING K-MEANS CLUSTERING

Original image

PSNR:

SAADI (t = n

MSE: 1115 SSIM: 79.8%

n = 4

17.7dB

n=8

25.0dB 224

94.6%

35.6dB

21 99.5%

Exact 32-bit div. (reference)

t = 2

397

PSNR: 22.3dB

SSIM: 92.7%

MSE:

24.4dB 260

94.2%

25.0dB

224

94.6%

COLOR QUANTIZATION USING K-MEANS CLUSTERING

Original image

SAADI (n = 8, t = 7)

PSNR:

MSE:

SSIM:

24.2dB

248

79.7%

27.1dB

126 84.9% 25.7dB179

88.9%

27.7dB

115

96.7%

ENERGY-ACCURACY TRADE-OFF COMPARISON

EDP (pJ·ns)

CONCLUSIONS: SAADI

- "Approximate": Exploits error resiliency of applications neural networks, signal processing
- "Dynamic quality configurability": First accuracyscalable divider
- Significant energy saving with minimum accuracy degradation
- 8-bit SAADI achieves average accuracy between 92.5% to 99.0% compared to 32-bit precise divider
- Application demonstrated for image processing