

ADMM Attack: An Enhanced Adversarial Attack for Deep Neural Networks with Undetectable Distortions

Pu Zhao¹, <u>Kaidi Xu</u>¹, Sijia Liu², Yanzhi Wang¹, Xue Lin¹

¹ Department of Electrical and Computer Engineering, Northeastern University

² MIT-IBM Watson AI Lab

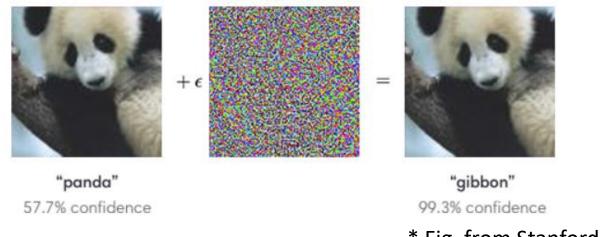
Presented at ASPDAC 2019, Tokyo, Japan

Outline

- Motivations
- Formulation
- Unified Framework
- Experimental Results
- Extensions

Motivation

- Deep neural networks (DNNs) are known vulnerable to adversarial attacks
- Adversarial examples in adversarial attacks:
 - adding delicately crafted distortions onto original legal inputs, can mislead a DNN to classify them as any target labels.



^{*} Fig. from Stanford CS231N class slides

- *L*_p norms of the distortion:
 - \blacktriangleright the added distortions are usually measured by L_0 , L_1 , L_2 , L_∞ , norms in L_0 , L_1 , L_2 , L_∞ attacks.
- A unified framework:
 - \blacktriangleright this work for the first time unifies the methods of generating adversarial examples by leveraging ADMM. L_0 , L_1 , L_2 , L_∞ attacks are effectively implemented by this general framework with little modifications.

Notations and Definitions

Representations of the DNN model:

```
input: x \in \mathbb{R}^{hw} or x \in \mathbb{R}^{3hw}
```

model:
$$F(x) = y$$

output:
$$0 \le y_i \le 1$$
 and $y_1 + y_2 + \cdots + y_m = 1$

logits:
$$F(x) = \operatorname{softmax}(Z(x)) = y$$

classification:
$$C(x) = \arg \max_{i} y_{i}$$

distance:
$$\|x - x_0\|_p = \left(\sum_{i=1}^n |x_i - x_{0i}|^p\right)^{\frac{1}{p}}$$

Notations and Definitions

Adversarial attack:

minimize
$$D(\boldsymbol{\delta}) + g(\mathbf{x} + \boldsymbol{\delta})$$

subject to $(\mathbf{x} + \boldsymbol{\delta}) \in [0, 1]^n$,

$$g(\boldsymbol{x}) = c \cdot \max \left(\left(\max_{i \neq t} \left(Z(\boldsymbol{x})_i \right) - Z(\boldsymbol{x})_t \right), -\kappa \right)$$

Z(x): logits before softmax layer

Reformulate the original problem:

minimize
$$b(\delta) + g(\mathbf{x} + \mathbf{z}) + h(\mathbf{w})$$

subject to $\mathbf{z} = \delta$
 $\mathbf{w} = \mathbf{x} + \mathbf{z}$, $h(\mathbf{w}) = \begin{cases} 0 & \mathbf{w} \in [0, 1]^n \\ \infty & \text{otherwise.} \end{cases}$

The augmented Lagrangian function:

$$\begin{split} L(\boldsymbol{\delta}, \mathbf{z}, \mathbf{w}, \mathbf{u}, \mathbf{v}) = &D(\boldsymbol{\delta}) + g(\mathbf{x} + \mathbf{z}) + h(\mathbf{w}) \\ &+ \mathbf{u}^T(\boldsymbol{\delta} - \mathbf{z}) + \mathbf{v}^T(\mathbf{w} - \mathbf{z} - \mathbf{x}) \\ &+ \frac{\rho}{2} \|\boldsymbol{\delta} - \mathbf{z}\|_2^2 + \frac{\rho}{2} \|\mathbf{w} - \mathbf{z} - \mathbf{x}\|_2^2, \end{split}$$

General Framework based on ADMM

- ADMM iterations
 - In the k-th iteration, the following steps are performed:

$$\begin{split} &\{\boldsymbol{\delta}^{k+1}, \mathbf{w}^{k+1}\} = \arg\min L(\boldsymbol{\delta}, \mathbf{z}^k, \mathbf{w}, \mathbf{u}^k, \mathbf{v}^k) \\ &\mathbf{z}^{k+1} = \arg\min L(\boldsymbol{\delta}^{k+1}, \mathbf{z}, \mathbf{w}^{k+1}, \mathbf{u}^k, \mathbf{v}^k) \\ &\mathbf{u}^{k+1} = \mathbf{u}^k + \rho(\boldsymbol{\delta}^{k+1} - \mathbf{z}^{k+1}) \\ &\mathbf{v}^{k+1} = \mathbf{v}^k + \rho(\mathbf{w}^{k+1} - \mathbf{x}^{k+1} - \mathbf{z}^{k+1}). \end{split}$$

minimize
$$D(\boldsymbol{\delta}) + \frac{\rho}{2} \|\boldsymbol{\delta} - \mathbf{z}^k + (1/\rho)\mathbf{u}^k\|_2^2$$

minimize $h(\mathbf{w}) + \frac{\rho}{2} \|\mathbf{w} - \mathbf{z}^k - \mathbf{x} + (1/\rho)\mathbf{v}^k\|_2^2$.
minimize $g(\mathbf{x} + \mathbf{z}) + \frac{\rho}{2} \|\boldsymbol{\delta}^{k+1} - \mathbf{z} + (1/\rho)\mathbf{u}^k\|_2^2$
 $+ \frac{\rho}{2} \|\mathbf{w}^{k+1} - \mathbf{z} - \mathbf{x} + (1/\rho)\mathbf{v}^k\|_2^2$,

General Framework based on ADMM

w step

$$\underset{\mathbf{w}}{\text{minimize}} \ h(\mathbf{w}) + \frac{\rho}{2} \|\mathbf{w} - \mathbf{z}^k - \mathbf{x} + (1/\rho)\mathbf{v}^k\|_2^2.$$

$$\begin{aligned} [\mathbf{w}^{k+1}]_i &= \\ \begin{cases} 0 & \text{if } [\mathbf{z}^k + \mathbf{x} - (1/\rho)\mathbf{v}^k]_i < 0 \\ 1 & \text{if } [\mathbf{z}^k + \mathbf{x} - (1/\rho)\mathbf{v}^k]_i > 1 \\ [\mathbf{z}^k + \mathbf{x} - (1/\rho)\mathbf{v}^k]_i & \text{otherwise,} \end{aligned}$$

General Framework based on ADMM

z step

minimize
$$g(\mathbf{x} + \mathbf{z}) + \frac{\rho}{2} \|\boldsymbol{\delta}^{k+1} - \mathbf{z} + (1/\rho)\mathbf{u}^k\|_2^2 + \frac{\rho}{2} \|\mathbf{w}^{k+1} - \mathbf{z} - \mathbf{x} + (1/\rho)\mathbf{v}^k\|_2^2,$$

minimize
$$(\nabla g(\mathbf{z}^k + \mathbf{x}))^T (\mathbf{z} - \mathbf{z}^k) + \frac{1}{2} \|\mathbf{z} - \mathbf{z}^k\|_{\mathbf{G}}^2 + \frac{\rho}{2} \|\mathbf{z} - \mathbf{a}\|_2^2 + \frac{\rho}{2} \|\mathbf{z} - \mathbf{b}\|_2^2.$$

$$\mathbf{z}^{k+1} = \frac{1}{\alpha + 2\rho} (\alpha \mathbf{z}^k + \rho \mathbf{a} + \rho \mathbf{b} - \nabla g(\mathbf{z}^k + \mathbf{x}))$$

$$\nabla g(\mathbf{z}^k + \mathbf{x})$$

first-order Taylor Bregman divergence

$$(\nabla g(\mathbf{z}^k + \mathbf{x}))^T(\mathbf{z} - \mathbf{z}^k) + \frac{1}{2} \|\mathbf{z} - \mathbf{z}^k\|_{\mathbf{G}}^2$$

Four Attacks based on the Framework

Proximal operator

$$\operatorname{\mathbf{pro}} \boldsymbol{x}_{\lambda D}(\boldsymbol{s}) = \arg\min_{\boldsymbol{\delta}} \left(\lambda D(\boldsymbol{\delta}) + \frac{1}{2} \|\boldsymbol{\delta} - \boldsymbol{s}\|_{2}^{2} \right)$$

• L₂ attack:

$$\mathbf{prox}_{\lambda 2}(\mathbf{s}) = \arg\min_{\boldsymbol{\delta}} \left(\lambda \|\boldsymbol{\delta}\|_{2} + \frac{1}{2} \|\boldsymbol{\delta} - \boldsymbol{s}\|_{2}^{2} \right) \longrightarrow \mathbf{prox}_{\lambda 2}(\mathbf{s}) = \begin{cases} (1 - \lambda/\|\mathbf{s}\|_{2})\mathbf{s} & \|\mathbf{s}\|_{2} \geq \lambda \\ 0 & \|\mathbf{s}\|_{2} < \lambda \end{cases}$$

• *L*₀ attack:

$$\mathbf{prox}_{\lambda 0}(\mathbf{s}) = \arg\min_{\delta} \left(\lambda \|\boldsymbol{\delta}\|_{0} + \frac{1}{2} \|\boldsymbol{\delta} - \boldsymbol{s}\|_{2}^{2} \right) \longrightarrow (\mathbf{prox}_{\lambda 0}(\mathbf{s}))_{i} = \begin{cases} 0 & |s_{i}| < \sqrt{2\lambda} \\ 0 \text{ or } s_{i} & |s_{i}| = \sqrt{2\lambda} \\ s_{i} & |s_{i}| > \sqrt{2\lambda} \end{cases}$$

Four Attacks based on the Framework

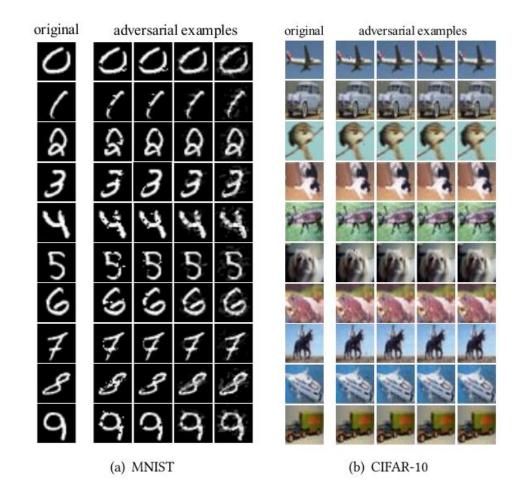
• L_1 attack

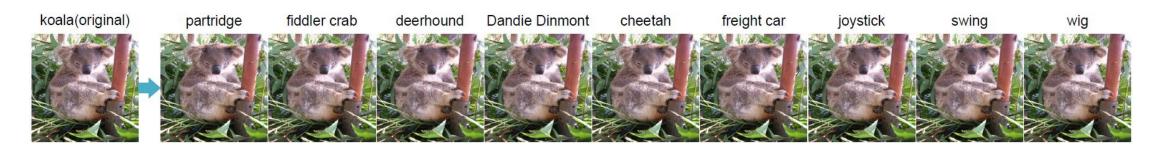
• L_{∞} attack

minimize
$$\|\boldsymbol{\delta}\|_{\infty} + \frac{\rho}{2} \|\boldsymbol{\delta} - \mathbf{s}\|_{2}^{2}$$
,

It has no closed form solution. We can obtain its solution by derive its KKT condition.

$$\sum_{i=1}^{n} \rho(s_i - t^*)_+ = 1 \qquad \delta_i^* = \min\{t^*, s_i\}$$





Adversarial examples on ImageNet, where an input of koala can be classified as other target labels by adding small distortions.

 L_0 attack

Dataset	Attack method	Best case ASR L_0		Averag ASR	ge case L_0	Worst case ASR L_0		
MNIST	$ \begin{array}{ c c c } C\&W(L_0)\\ ADMM(L_0) \end{array} $	100 100	7.88 6.94	100 100	16.58 13.35	100 100	29.84 23.66	
CIFAR	$ \begin{array}{ c c c } C\&W(L_0)\\ ADMM(L_0) \end{array} $	100 100	8.16 7.64	100 100	20.82 18.78	100 100	35.07 32.81	

 L_1 attack

Data Set	Methods	Best	Case	Averag	ge Case	Worst Case		
Data Set	Wethods	ASR	L_1	ASR	L_1	ASR	L_1	
MNIST	$ \begin{array}{c} \operatorname{IFGM}(L_1) \\ \operatorname{EAD}(L_1) \\ \operatorname{ADMM}(L_1) \end{array}$	100 100 100	17.3 7.74 6.29	100 100 100	34.6 14.16 12.35	100 100 100	58.4 21.38 17.9	
CIFAR-10	$ \begin{array}{c} \operatorname{IFGM}(L_1) \\ \operatorname{EAD}(L_1) \\ \operatorname{ADMM}(L_1) \end{array}$	100 100 100	5.96 1.94 1.75	100 100 100	15.8 4.62 3.750	100 100 100	20.8 7.25 5.92	
ImageNet	$ \begin{array}{c} \operatorname{IFGM}(L_1) \\ \operatorname{EAD}(L_1) \\ \operatorname{ADMM}(L_1) \end{array}$	100 100 100	298 60.98 49.17	100 100 100	580 112.7 75.2	100 100 100	685 185 127	

 L_2 attack

Data Set	Attack Method	Best Case			Average Case				Worst Case				
		ASR	L_2	L_1	L_{∞}	ASR	L_2	L_1	L_{∞}	ASR	L_2	L_1	L_{∞}
MNIST	$FGM(L_2)$	99.3	2.158	23.7	0.562	43.2	3.18	37.6	0.761	0	N.A.	N.A.	N.A.
	$IFGM(L_2)$	100	1.61	18.2	0.393	99.7	2.43	31.8	0.574	99.3	3.856	54.1	0.742
	$C\&W(L_2)$	100	1.356	13.32	0.394	100	1.9	21.11	0.533	99.6	2.52	30.44	0.673
	$ADMM(L_2)$	100	1.268	15.93	0.398	100	1.779	25.06	0.444	99.9	2.269	34.7	0.561
CIFAR-10	$FGM(L_2)$	99.7	0.418	13.85	0.05	40.6	1.09	37.4	0.62	1.2	4.17	119.3	0.43
	$IFGM(L_2)$	100	0.185	6.26	0.021	100	0.419	14.9	0.043	100	0.685	22.8	0.0674
	$C\&W(L_2)$	100	0.170	5.721	0.0189	100	0.322	11.28	0.0347	100	0.445	15.79	0.0495
	$ADMM(L_2)$	100	0.163	5.66	0.0192	100	0.315	10.97	0.0354	100	0.427	15.05	0.0502
ImageNet	$FGM(L_2)$	15	2.37	815	0.129	3	7.51	2104	0.25	0	N.A.	N.A.	N.A.
	$IFGM(L_2)$	100	0.984	328	0.031	100	2.38	795	0.079	97.6	4.59	1354	0.177
	$C\&W(L_2)$	100	0.449	126.8	0.0159	100	0.621	198	0.0218	100	0.81	272.3	0.031
	$ADMM(L_2)$	100	0.412	112.5	0.017	100	0.555	166.7	0.021	100	0.704	225.6	0.0356

Extensions

- Structured Attack by ADMM
- Blackbox attack
- Interpretability of Adversarial examples

Question time

Thank you!