

Learning the Sparsity for ReRAM: Mapping and Pruning Sparse Neural Network for ReRAM based Accelerator

Jilan Lin^{1,2}, Zhenhua Zhu¹, Yu Wang¹ and Yuan Xie²

¹Dept. of ECE, Scalable and Energy–Efficient Architecture Lab (SEAL) UCSB, Santa Barbara, U.S.

²Dept. of EE, Tsinghua National Laboratory for Information Science and Technology (TNList), Tsinghua University, Beijing, China

Brief Summary

- Target: Efficient <u>sparse</u> neural network in <u>ReRAM</u>-based computing
- **Proposal 1:** Map the huge sparse matrix with column exchanging.
 - Eliminate the unnecessary ReRAM crossbars.
- **Proposal 2:** Prune neural network with grainy of ReRAM crossbar.
 - Further save more ReRAM crossbars.

Outline

CSB

Background & Motivation

- ReRAM based Computing for Neural Networks
- Sparse Neural Network

• Proposed Solutions

- Sparse Neural Network Mapping
- Crossbar-Grained Pruning
- Simulation Results
- Conclusion

Outline

CSB

Background & Motivation

- ReRAM based Computing for Neural Networks
- Sparse Neural Network
- Proposed Solution
 - Sparse Neural Network Mapping
 - Crossbar-Grained Pruning
- Simulation Results
- Conclusions

Background & Motivation

• Neural networks (NNs) now dominate the field of machine learning.

• Neural networks (NNs) now dominate the field of machine learning.

Google Translation

• Neural networks (NNs) now dominate the field of machine learning.

Google Translation

AlphaGo [Silver D_nature_2016]

• Neural networks (NNs) now dominate the field of machine learning.

Google Translation

AlphaGo [Silver D_nature_2016]

Pedestrian detection

[Zhang_CVPR_2016]

- Neural networks (NNs) now dominate the field of machine learning.
 - Key operations: Matrix-Vector/Matrix Multiplication

Google Translation

AlphaGo [Silver D_nature_2016]

Pedestrian detection [Zhang_CVPR_2016]

Hidden Layer

Input Layer

Output Layer

Fully Connected NN

- NNs are hardware-expensive, due to the huge amount of parameters.
 For VGG-16:
 552 MB paras, 1.6×10¹⁰ ops (forward), 4×10⁴ iterations (backward) ^{[1][2]}
- Fully connected (FC) layer: frequently used but extremely large.
 - For FC1 in VGG-16: Size of $\mathbf{25088}\!\times\!\mathbf{4096}$
 - Memory-bound with limited bandwidth.

- 1. Cheng, Ming, et al. "Time: A training-in-memory architecture for memristor-based deep neural networks." DAC 2017. ACM, 2017.
- 2. Chi, Ping, et al. "Prime: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory." ACM SIGARCH Computer Architecture News. Vol. 44. No. 3. IEEE Press, 2016.

Resistive Random Access Memory (ReRAM)

- ReRAM provides a promising solution to compute matrix efficiently.
 - Storing information with resistive cell.
 - Reducing the complexity with crossbar array: $O(n^2) \rightarrow O(n^0)$

ReRAM based NN Acceleration

- ReRAM based NN acceleration is attractive.
 - In-memory computing/Low power/Scalable ...
 - PRIME [ISCA 2016], ISAAC [ISCA 2016], and PipeLayer [HPCA 2017].

Fully Connected NN

ReRAM based Computing

Sparse NN

- Learning the Sparsity for NN brings significant advantages.
 - Compressing the model ~10X
 - Avoiding overfitting.

Fully Connected NN

Sparse NN

Sparse NN V.S. ReRAM Crossbar

• The crossbar structure is contradictory with sparse matrix.

Sparse NN

ReRAM based Computing

Sparse NN vs. ReRAM Crossbar

- The crossbar structure is contradictory with sparse matrix.
 - Matrix must be stored in dense way for O(1) computing.
 - No benefits from sparsity.

Sparse NN

ReRAM based Computing

Outline

- Background & Motivation
 - ReRAM based Computing for Neural Networks
 - Sparse Neural Network

• Proposed Solution

- Sparse Neural Network Mapping
- Crossbar-Grained Pruning
- Simulation Results
- Conclusions

1: Mapping

- Observation 1: The matrix can be quite large but quite sparse.
 - FC1 in VGG16 (25088 imes 4096): Cannot map to a single crossbar
 - 90% paras vs. 96% sparsity after pruning. [Han, NIPS 2016].
 - ReRAM can only be positive: Even more sparse. Density: 4%→2%

Solution 1: Column Exchanging based Mapping

• Key idea: Exchange the column to make non-zero element gathered.

Solution 1: Column Exchanging based Mapping

• Key idea: Exchange the column to make non-zero element gathered.

Solution 1: Column Exchanging based Mapping

- Key idea: Exchange the column to make non-zero element gathered.
- Proposed method: Exchanging the column based on *k-means* clustering.
 - Comparing the similarity of columns based on Hamming distance.
 - Clustering into *n* categories ($n \sim \#$ crossbars)

2. Crossbar Utilization

- Observation 2: There still exist crossbars with low utilization.
 - \sim 20% crossbars have less than 20% non-elements for VGG16.

Solution 2: Crossbar-Grained Pruning

- Key idea: Prune the weights in low-utilization crossbars.
 - Finetuning the model after pruning.

Architectural Implementation

- The re-ordered mapping can be implemented in various architectures.
 - Only for outputs and not necessary for inputs.

Outline

- Background & Motivation
 - ReRAM based Computing for Neural Networks
 - Sparse Neural Network
- Proposed Solution
 - Sparse Neural Network Mapping
 - Crossbar-Grained Pruning
- Simulation Results
- Conclusions

Simulation Setup

- Simulation setup:
 - Implemented on PRIME [ISCA 2016] with 45nm technology.

The architecture of PRIME

Simulation Setup

- Simulation setup:
 - Implemented on PRIME with 45nm technology.
 - Benchmarks:

NNs	LeNet-5	AlexNet	VGG-16	ResNet-18	LSTM-5
Dataset	MNIST	ImageNet	CIFAR-10	CIFAR-10	LibriSpeech
Sparsity	92%	89%	92.5%	75%	85%

Energy Results – Sparse Mapping

- Energy results among different crossbar sizes:
 - Works better for smaller ReRAM crossbars/more sparse models.
 - \sim 3x boosting on average observed for 90% sparsity.

Energy Results – Pruning

- Energy results among different benchmarks:
 - -Works better for those models with large FC layers

Performance Results

- Performance results among different benchmarks:
 - Works better for those models with large FC layers

Accuracy Results

- Almost no accuracy loss/acceptable loss.
 - Compared with conventional pruning, < 0.5% accuracy loss.

Nerual Networks	LeNet-5	VGG-16	ResNet-18	LSTM-5
Original	99.23%	93.64%	92.37%	89.24%
Normal Pruning	99.13%	93.62%	92.07%	88.49%
Crossbar Pruning	99.15%	93.72%	91.78%	88.01%

Accuracy Results

- Pruned paras vs. saved crossbars:
 - Save 5x crossbars compared to pruned parameters.

Conclusions

- We propose a novel sparse NN mapping scheme based on weight columns clustering, to achieve better ReRAM crossbar utilization.
- We propose crossbar-grained pruning algorithm to reduce the crossbars with low utilization.
- Evaluation results indicate 3–5imes energy efficiency and 2.5–6imes speedup.
- Our pruning algorithm appears to have almost no accuracy loss.

Thanks for your attending!