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• Target: Efficient sparse neural network in ReRAM-based computing
• Proposal 1: Map the huge sparse matrix with column exchanging.

– Eliminate the unnecessary ReRAM crossbars.

• Proposal 2: Prune neural network with grainy of ReRAM crossbar.
– Further save more ReRAM crossbars.
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• Background & Motivation
– ReRAM based Computing for Neural Networks
– Sparse Neural Network

• Proposed Solutions
– Sparse Neural Network Mapping
– Crossbar-Grained Pruning

• Simulation Results
• Conclusion
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Background & Motivation
• Neural networks (NNs) now dominate the field of machine learning.
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• Neural networks (NNs) now dominate the field of machine learning.
- Key operations: Matrix-Vector/Matrix Multiplication

Google Translation AlphaGo [Silver D_nature_2016]

Pedestrian detection
[Zhang_CVPR_2016]

Input Layer

Hidden Layer

Output Layer

Fully Connected NN
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Neural Networks
• NNs are hardware-expensive, due to the huge amount of parameters.

- For VGG-16: 
552 MB paras, 1.6×1010 ops (forward), 4×104 iterations (backward) [1][2]

• Fully connected (FC) layer: frequently used but extremely large. 
- For FC1 in VGG-16: Size of 25088×4096
- Memory-bound with limited bandwidth.

1. Cheng, Ming, et al. "Time: A training-in-memory architecture for memristor-based deep neural networks." DAC 2017. ACM, 2017.
2. Chi, Ping, et al. "Prime: A novel processing-in-memory architecture for neural network computation in ReRAM-based main memory." ACM 

SIGARCH Computer Architecture News. Vol. 44. No. 3. IEEE Press, 2016.
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Resistive Random Access Memory (ReRAM)
• ReRAM provides a promising solution to compute matrix efficiently.

- Storing information with resistive cell.
- Reducing the complexity with crossbar array: O(n2)O(n0)
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ReRAM based NN Acceleration
• ReRAM based NN acceleration is attractive.

- In-memory computing/Low power/Scalable …
- PRIME [ISCA 2016], ISAAC [ISCA 2016], and PipeLayer [HPCA 2017].

ReRAM based Computing
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Sparse NN
• Learning the Sparsity for NN brings significant advantages.

- Compressing the model ~10X
- Avoiding overfitting.

Fully Connected NN Sparse NN



Scalable and Energy-Efficient Architecture Lab (SEAL)

Sparse NN V.S. ReRAM Crossbar
• The crossbar structure is contradictory with sparse matrix.

ReRAM based Computing
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Sparse NN
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Sparse NN vs. ReRAM Crossbar
• The crossbar structure is contradictory with sparse matrix.

- Matrix must be stored in dense way for O(1) computing.
- No benefits from sparsity.

ReRAM based Computing

SA SA SA SA

Sparse NN
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1: Mapping
• Observation 1: The matrix can be quite large but quite sparse.

- FC1 in VGG16 (25088×4096): Cannot map to a single crossbar
- 90% paras vs. 96% sparsity after pruning. [Han, NIPS 2016].
- ReRAM can only be positive: Even more sparse.
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• Key idea: Exchange the column to make non-zero element gathered.

Solution 1: Column Exchanging based Mapping

Original Matrix Column Exchanging 
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• Key idea: Exchange the column to make non-zero element gathered.
• Proposed method: Exchanging the column based on k-means clustering.

- Comparing the similarity of columns based on Hamming distance.
- Clustering into n categories (n ~ # crossbars)

Solution 1: Column Exchanging based Mapping
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2. Crossbar Utilization
• Observation 2: There still exist crossbars with low utilization.

- ~ 20% crossbars have less than 20% non-elements for VGG16.
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Solution 2: Crossbar-Grained Pruning
• Key idea: Prune the weights in low-utilization crossbars.

- Finetuning the model after pruning.
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Architectural Implementation
• The re-ordered mapping can be implemented in various architectures.

- Only for outputs and not necessary for inputs.
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Simulation Setup
• Simulation setup:

- Implemented on PRIME [ISCA 2016] with 45nm technology.

The architecture of PRIME



Scalable and Energy-Efficient Architecture Lab (SEAL)

Simulation Setup
• Simulation setup:

- Implemented on PRIME with 45nm technology.
- Benchmarks:

NNs LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5
Dataset MNIST ImageNet CIFAR-10 CIFAR-10 LibriSpeech

Sparsity 92% 89% 92.5% 75% 85%
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Energy Results – Sparse Mapping
• Energy results among different crossbar sizes:

- Works better for smaller ReRAM crossbars/more sparse models.
- ~ 3x boosting on average observed for 90% sparsity.

0

1

2

3

4

5

PRIME 60 70 80 90 92.5 95

En
er

gy
 E

ffi
ci

en
cy

(N
or

m
al

iz
ed

 to
 P

R
IM

E)

Pruning Sparsity (%)

128× 64× 32× 16×



Scalable and Energy-Efficient Architecture Lab (SEAL)

Energy Results – Pruning
• Energy results among different benchmarks:

-Works better for those models with large FC layers
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Performance Results
• Performance results among different benchmarks:

- Works better for those models with large FC layers

0

2

4

6

8

10

12

LeNet-5 AlexNet VGG-16 ResNet-18 LSTM-5

Sp
ee

du
p

(N
om

al
iz

ed
to

 P
R

IM
E)

PRIME Sparse Mapping



Scalable and Energy-Efficient Architecture Lab (SEAL)

Accuracy Results
• Almost no accuracy loss/acceptable loss.

- Compared with conventional pruning, < 0.5% accuracy loss.
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Accuracy Results
• Pruned paras vs. saved crossbars:

- Save 5x crossbars compared to pruned parameters.
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Conclusions 
• We propose a novel sparse NN mapping scheme based on weight columns

clustering, to achieve better ReRAM crossbar utilization.
• We propose crossbar-grained pruning algorithm to reduce the crossbars

with low utilization.
• Evaluation results indicate 3−5× energy efficiency and 2.5−6× speedup.
• Our pruning algorithm appears to have almost no accuracy loss.
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Thanks for your attending!
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