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 Continuous glucose monitoring (CGM) for real-time diabetes monitoring

Background 

Fully-Passive Sensor Tag

Invasive, bulky…

Tear Glucose

Non-invasive, high time resolution…

Under the Skin

Invasive, life span, battery…

[1]

[2]

[3]

Hyperglycemia (high glucose) and 

hypoglycemia (low glucose condition) tracking

[1] Eversense. [2] Z. Xiao et al., IEEE JBHI, May. 2015, pp. 910. 

[3] K. Hayashi et al., BioCAS, Oct. 2018, pp. 379
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Conventional CGM Contact lens 1 

 Conventional type [4–6]:RF powered + Potentiostat

Wireless Power Transfer

Low Energy Efficiency

Potentiostat

Power-hungry (400–500nW)

[4] Y. T. Liao et al., JSSC, Jan. 2012, pp. 335. [5] Y. T. Liao et al., ISSCC, Feb. 2011, pp. 38 [6] C. Jeon

et al., VLSI Circuits, Jun. 2019, pp. C294
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Conventional CGM Contact lens 2 

Wireless Transmitter (Tx)

External Receiver (Rx)

Biofuel cell(BFC)

 Our previous work [3]: BFC powered + BFC interface

[3] K. Hayashi et al., BioCAS’18, pp. 379. 5 of 30
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Micro Glucose BFC Element

 Manufacturing 0.36 mm2 power generation element by wafer process [9]

Cross section conceptual graph of the BFC [8] 

Pt/Al alloy

Carbon 

nanotube

Nafion

[8] K. Niitsu et al., Jpn. J. Appl. Phys. 56, 2017, pp. 01AH04

[9] S. Arata et al., Jpn. J. Appl. Phys., Mar. 2018, pp. 04FM04
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Micro Glucose BFC Performance

 The low power density of BFC limits Tx’s link budget, requiring high-gain receiver

 Solar cell (SC) is a substitute providing 10–100× larger power density [10]

[10] A. Kobayashi et al., IEEE ICECS, Nov. 2019, pp. 61

BFC with a power density of 0.14 μW/cm2 [9] Measured power density of the SC in [10]
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 Micro-LED is a good option to achieve a fully stand-alone operation [7] 

Reading Out Method

Glucose level detection

Wireless transmission

[7] J. Pandey et al., TBioCAS, Dec. 2010, pp. 454

Micro-LED
Customized LED [7] 
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Motivation

 Localized energy generation by SC

 Localized information display by LED

Our proposal:

SC powered + BFC input / LED

Glucose level: Insulin 

overdose

Lower limit

Hypoglycemia,

have a candy!

VDD

VSS

BFC
LED

On-lens

Off-chip

capacitor

(C1,C2,C3)

Core

IC

3-lvl

SC
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Objective

 To realize a fully stand-alone RF-less biosensing system for CGM contact lens

Stand-alone biosensing system 

for CGM contact lens

VSS

VDD

C3

C1

Core 

IC

SC

C
2

hν

hν'

LED

BFC

 Target specifications of Core IC:

◼ High input impedance for BFC [GΩ]

◼ High sensitivity for glucose range [0–25 mg/dL]

◼ High VLED for LED driving [>3 V]

◼ Low standby power consumption [<150nW]

◼ Low area cost [<1 mm2]
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CGM System Architecture

 Function division: signal modulation, , LED switching

 Sensing part: M1 provides high input impedance for BFC-input port

Core IC
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LED Lighting Timing Modulation
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LED Lighting Pattern of PIM and PDM
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LED Driving Capability
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・・・
VSC

Φ1 Φ2

OUT

Dickson charge pump: CP(1.5 V), CP(2 V), CP(4 V)
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 The charge pump (CP) configurations:
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Switch Gate Driver
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 Simulated I-V Curve (right top) 
of the LED with the LED SPICE model

 The buffers switch on the LED at

𝑉LED = 2.7 V
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Implemented Prototype

 The Core IC and on-lens SCs were implemented in 65-nm CMOS process

 The Core ICs with PIM and PDM were prototyped separately 

 Commercial LED [11] was utilized to maintain a low cost

LED

C1

C2

C3

Core IC

SC

BFC

0
.5

 m
m

1.0 mm

CP(4V)

CP(2V)

O
th

e
rsCP(1.1V)

CP(1.5V)

Supporting boardPolyimide

flexible substrate

BFC

SC

0.6 mm×0.6 mm

0.45 mm×0.45 mm

[9]

PIM Sample PDM Sample

[9] S. Arata et al., Jpn. J. Appl. Phys., Mar. 2018, pp. 04FM04

[11] SML-P12x/P13x Series PICOLED, Rohm Semiconductor, 2020
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Measurement Setup

VBFC

VSC

Widely-used digital still camera

Keysight

B2912A Precision

Source / Measure Unit
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Solar Cell Implementation

 The connection of PS/DNW is separated to maintain a high open-circuit voltage

NW

N+

NW

N+P+ P+N+ N+

DNW

PW

PS

P+ P+・・・

V−
This WorkSolar cell in [10]

[10] A. Kobayashi et al., IEEE ICECS, Nov. 2019, pp. 61
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N+

NW

N+P+ P+N+ N+

DNW
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P+ P+・・・

V− V+

V+

V−

PW/DNW

PW/N+
PS/DNW

VL
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PW/N+PS/DNW

56 μm 56 μm
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Power Consumption

 The standby power of 144 nW at 0.39 V in PDM can be managed by the SC group

Cold Start-up (PIM)
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LED Lighting and Average Power

Average Power Consumption

 The light emission has been confirmed in PIM mode from 0.31 V to 0.4 V

Camera-Captured Image
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 The switching logic circuits are sub-nW

 The charge pumps can be power-gated during standby period in future work

Power Breakdown

LED Switches (M2, M3)
36%

Switching 
Logic 
Circuit

1%

CP(4 V)
47%

CP(1.5 V)
4%

CP(2 V)
12%

PIM Mode

LED Switches (M2, M3)
10% Switching 

Logic 
Circuit

1%

CP(4 V)
68%

CP(1.5 
V)
4%

CP(2 V)
18%

PDM Mode
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Performance Comparison

This work [5] ISSCC’11 [3] BioCAS’18 [6] VLSI’19

Target 
application

CGM +
LED display

CGM + RFID CGM + Wireless TX CGM + RFID

Supply voltage 
[V]

0.31–0.4 (PIM)
0.39 (PDM)

1.2
(regulated)

0.165–0.39
2.0

(regulated)

Energy and 
sensing source

Solar cell-powered
+ BFC-input/LED

RF-powered +
Potentiostat/RF Tx

BFC-powered + 
BFC-input/RF Tx

RF-powered +
Potentiostat/RF Tx

Modulation 
scheme

Hybrid PIM/PDM FM-LSK
Supply-modulated 

OOK
LSK + OOK

Power 28–117 nW (PIM)
144 nW (PDM)

3 μW
(only tag)

0.27–11.8 nW
(only TX)

143 nW
(only tag)

Off-chip 
capacitor

1×10 nF
2×39 pF

None None 1 (RF mode)

External device
Fully 

stand-alone
RFID Reader/

Writer
Data Receiver

RFID Reader/
Writer

Readout 
distance

Display
on lens

15 cm > 10 cm 1 cm

Process 65 nm 0.13 μm 65 nm 0.18 μm

Chip area [mm2] 0.5 0.5 0.1482 2.25

Glucose level 
[mg/dL]

0–25 0–36 180–540 3–25
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 This work demonstrates the feasibility of a SC-powered BFC-input stand-
alone RF-less CGM system for the first time

 This biosensing system shows the feasibility of helping the users to
prevent low-glucose conditions with the on-lens LED

 The prototype shows the possibility of operation by on-lens solar cells
under office-room ambient light

Summary
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