A 5.2GHz RFID Chip Contactlessly Mountable on FPC at Any 90-Degree Rotation and Face Orientation

Reiji Miura

Graduate School of Engineering

The University of Tokyo, Tokyo, Japan

Reiji Miura (1/27)

Introduction

- Proposed method
 - Bonding-less structure
 - High frequency implementation
- Experimental results
- Conclusion

Introduction

- Proposed method
 Bonding-less structure
 High frequency implementation
- Experimental results
- Conclusion

RFID=Radio Frequency Identification

The ID information on tags are communicated to a nearby reader, and reader accesses database via Internet

Reiji Miura (4/27)

Application

- RFID is applied to unmanned cash register and inventory management
- To fulfill RFID potential, tags need to be low cost

Reiji Miura (5/27)

RFID tag manufacturing cost

Antenna cost, IC-chip cost, Bonding cost

Reiji Miura (6/27)

Introduction

Proposed method Bonding-less structure High frequency implementation Experimental results

Conclusion

- A bonding-less 5-GHz RFID module
- Wireless connection between chip and antenna
 Significant reduction in bonding costs

High frequency

♦a 95% downsized antenna

Reiji Miura (8/27)

Block diagram of the module

- The antenna and the IC chip communicate wirelessly by inductive coupling
- The IC chip consists of the on-chip coil, the rectifier, the ID circuit, and the load modulator

Reiji Miura (9/27)

- The antenna is made up of two components
 a conventional dipole antenna
 a coupling structure to provide inductive coupling
- Coil diameter: 300um
- Distance between coils: 30um

- Reduced received power
 - An increase of signal reflection
- Impedance matching between antenna and rectifier is required
 - The input impedance of the rectifier being nonlinear and dependent on the input voltage and output current

Reiji Miura (11/27)

Design methodology for impedance matching

- The input impedance of the rectifier design
- Antenna design
 - ♦Impedance matching L_s
 - ♦Impedance matching R_s

Reiji Miura (12/27)

The input impedance design

- The sweeping of R_s and L_s is repeated to obtain R_{s_opt} and L_{s_opt} that maximize V_{out} at 5.2GHz
- R_{s_opt} =4.5Ω, L_{s_opt} =4.6nH

Reiji Miura (13/27)

P_{in} : The received power(set to -10dBm) V_{out} : The out put Voltage

- Design the on-chip coil for maximum inductance
 - Increased number of turns (N = 3)
 - Metal width optimization (15um)
- A matching circuit using a MIM capacitor is inserted to improve impedance matching

Reiji Miura (14/27)

- The gain and imaginary part are almost constant
- The real part varies significantly
 - It is possible to design R_{s_opt} while maintaining the gain and the antenna inductance at their desired values

Antenna gain under 8 conditions

- The performance of the antenna is almost the same within 0.5 dB deviation
- The chip can be mounted on the FPC using any of these 8 geometric variations

Reiji Miura (16/27)

Tag chip photo

The chip fabricated in 180nm CMOS is 300um x 500um

The chip layout

The chip photo

Reiji Miura (17/27)

6-stage CMOS cross-couple charge pump and resistance load

Reiji Miura (18/27)

[1] : M. Stoopman et al., *IEEE JSSC*, March 2014, pp. 622–634.

ID Circuit using adiabatic Logic^[2]

Charging/Discharging current is reduced by varying supply voltage

- Consume lower power
- Driven by power clock

Reiji Miura (19/27)

[2]: J. Hu et al., MWSCAS, 2005, pp.1398-1401.

Depends on the modulation method Load modulation circuit

Introduction

Proposed method

- Bonding-less structure
- High frequency implementation

Experimental results

Conclusion

The chip implementation on FPC

- The antenna was made using FPC
- Antenna size : 22mm x 1mm

Photograph of proposed RFID module Reiji Miura (22/27)

Test chip

The RFID module successfully worked at 20cm from a reader whose output power is 15dBm

Reiji Miura (23/27)

The gain of the antenna was increased to almost the same as that of the dipole antenna in the front direction

Reiji Miura (24/27)

Performance Comparison

Reference	[3]	This work
Frequency	UHF	5.2 GHz
Antenna size (ratio)	1000mm ² (22.7)	22mm ² (1)
Tag chip size ratio	6.6	1
Technology	0.13 um CMOS	0.18 um CMOS
EIRP	36 dBm	15 dBm
Working distance	210 cm	20 cm
FoM	10.85	13.83

The UHF bonding-less module ^[3] Reiji Miura (25/27)

This work(5GHz bonding-less)

[3] Walther Pachler, et al., IEEE EUCAP 2013

Introduction

Proposed method

- Bonding-less structure
- High frequency implementation
- Experimental results

Conclusion

Conclusion

A bonding-less 5-GHz RFID module

- Wireless connection between chip and antenna
 - Significant reduction in bonding costs
- High frequency
 - a 95% downsized antenna
- The chip can be mounted on the FPC using any of these 8 geometric variations
- The tag module successfully worked at 20cm away from the reader whose output power is 15dBm