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Security Challenge on Shared Platforms

e Applications from mutually untrusted sources share one physical machine.

e Shared hardware (last level cache, random number generator, and GPU) can be
media of information leakage.
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Challenges to Defend against Cache Timing
Channel

e The only thing adversaries do is to modulate their accesses to
microarchitecture.

e Shared microarchitecture cannot be disabled without performance degradation.

e Microarchitecture side channel can be implemented with various protocols.



Pros and Cons of Prior Defense Mechanisms

e Microarchitecture Partitioning:

e Pros: Straightforward mitigation with existing hardware.

e Cons: Either requires SW-HW co-design or impact performance of benign workloads.
e Secured Hardware Design:

e Pros: Defense without limiting available hard resource of each process.

e Cons: Complicated to implement; Annul the optimizations.
e Detection:

e Pros: On-demand protection without influence on benign workloads.

e Cons: High false positive penalty; May be evaded by advanced spy.



Typical Iteration of Information Leakage

e Spy’s Setup: Setup hardware status to make future activities of victim
observable.

e Victim’s Leakage: Victim's secret-dependent activities change hardware status.

e Spy’s Observation: Spy observes status changed by victim and decode the
secret.



Example Iteration of Cache Side Channel

= All cache timing channel attacks involved three phases:
7 Spy’s Setup: Spy removes critical memory lines from cache.
7Victim’s Leakage: Victim accesses critical memory lines.
7Spy’s Observation: Spy reloads memory lines and measures latency.

Flush critical memory lines. Activity 1 a c|c|c|c| Reload critical memory lines.
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Evict critical memory lines. Activity 1 C|C| C| C| Reload critical memory lines.
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Evict critical memory lines. Activity 1 ClC C|C Reload spy’s memory lines.
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lterations of Various Side Channels

Attack Variant

Spy’s Setup

Victim’s Leakage

Spyv’s Observation

BranchScope[4] Spyv manipulates Victim executes Spy executes
predictor status branch primed branches
TLBleed[10] Spy occupies TLB Victim accesses Spy accesses
set with its addrs. memory lines occupied TLB
Cache Spy occupies Victim accesses Spy probes
Prime+ Probe[15] a cache set occupied cache set the cache set
Cache Spy flushes Victim accesses Spy reloads
Flush+Reload [22] victim mem. lines | victim mem. lines | flushed mem. lines

Speculation-based

side channel[13, 14]

Spy flushes
exploited array

Victim transiently
loads
secret-dependent

addr.

Spy reloads
exploited array




Capturing Iterations of Information Leakage

e Marker Event: a critical event which appears in no less than half of iterations of a side
channel attack

e Target Event: a series of events that occur inbetween marker events.

Spy’s Setup Victim's Leakage Spy’s Observation Spy’s Setup
Critical Event |:> Critical Event i> Critical Event [> Critical Event
Marker Event Target Event Critical Event Marker Event




Capturing Iterations of Information Leakage

e Reuse Distance: The number of target events between a pair of repetitive
marker events.

e Multiple positive reuse distance value would be observed in side channels.
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Filtering the Events

e For some types of microarchitecture side channels, marker events of a side
channel could happen within specific regions.

e We define these hardware events that has the same event type with the marker

events as marker candidate.

e Aggressive filtering methods are needed before detection in order to reduce the

number of marker candidates.
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Case Study: Detecting Speculation-based

Attack

e Typical Implementation of Speculation-based Side Channel.

Cache

e_array[0]

e_array[1]

e_array[255*512]

Flush

)

Cache

Speculatively load
e_array[secret * 512]
and squash the load

after execution. >
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Reload
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Cache
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Case Study: Detecting Speculation-based
Attack

e Repetitive Activities of Speculation-based Side Channel

Attack Variant Byte/Iteration Byte Accuracy

Spectre vl 1 99%
Spectre v2 4 98%
Meltdown 1 94%
Foreshadow 1 70 - 99%

e Event Definition

e Marker Event: Conflict Misses

e Target Event: Mis-speculated Load Instructions



Case Study: Detecting Speculation-based
Attack

e Overall Design

Addr. Translation
Dispatcher Load/Store 1

Memory Hierarchy

Speculative Load
Buffer Conflict Tracker
Evicting | Evicted | | |
1 Inst Physical Addr Addr
Reorder Buffer Pointer Addr.

Addr. of evicted mem. line

Squashed and Committed Insts

Event Filter ‘
Filtered EventAfiribufes |
Defense Actuator _
# of Positive  Exploited Addr. | Intelligence Log Reuse Distance Buffer
Reuse Dist.

Cache Miss Addr. | Squashed Load
Register Accumulator

Prefetch Requests to
Obfuscate Adversary




Case Study: Detecting Speculation-based
Attack

e Experimental Setups

e Gem5 with four x86 cores, 32 KB private L1 and 4 MB, 8-way shared L2
caches.

e Implemnt Spectre vl and v2 to evaluate our design.
e Both adversaries repeat attack iteration 100 times for single byte
e Both adversaries manage to steal 40 bytes of the secret.

e We implement adversary with different transmission rates.

Attack Variant Iteration/Second

Spectre-vz-1 0.5k
Spectre-vz-2 1.5k
Spectre-vz-3 3k
Spectre-vz-4 bk

Spectre-vz-5 10k




Case Study: Detecting Speculation-based
Attack

e Efficiency of Event Filtering
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The first level event filtering remove 97% of cache sets potentially with one of the events



Case Study: Detecting Speculation-based
Attack

e Number of Positive Reuse Distance Observed in Speculation-based Side Channels
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e Number of Positive Reuse Distance Observed in Benign Workloads

Process Name Count of Positive Reuse Distances
benignSpec v1 0
benignSpec v2 0
hmmer 3
Other SPEC2006 0
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Case Study: Detecting Speculation-based
Attack

e Obfuscating Side Channel using Prefetcher
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e SC-K9 provides rich information for further defense.

e I[n this case study, we leverage prefetcher to obfuscate victim’s leakage
phase.
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Conclusion

e \We leverage the fundamental behavior of side channels and develop a generic
framework to capture the repetitive interference observed in these attacks.

e We evaluate SC-K9 using recently notorious case study: speculation-based
cache.

e Our experimental results show that SC-K9 can effectively distinguish
adversaries from various types of benign workloads with high accuracy.

e Our evaluation shows that the information provided by SC-K9 can be used in
efficient defense mechanism, which can make it difficult or impossible for the
spy to recover any leaked secrets.
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