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Security Challenge on Shared Platforms

● Applications from mutually untrusted sources share one physical machine.

● Shared hardware (last level cache, random number generator, and GPU) can be 

media of information leakage.
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Hardware: Last Level Cache, Storage, Network
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Challenges to Defend against Cache Timing 

Channel

● The only thing adversaries do is to modulate their accesses to 

microarchitecture.

● Shared microarchitecture cannot be disabled without performance degradation.

● Microarchitecture side channel can be implemented with various protocols.
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Pros and Cons of Prior Defense Mechanisms

● Microarchitecture Part it ioning:

● Pros: Straightforward mit igation with exist ing hardware.

● Cons: Either requires SW-HW co-design or impact performance of benign workloads.

● Secured Hardware Design:

● Pros: Defense without l imit ing avai lable hard resource of each process.

● Cons: Complicated to implement; Annul the optimizations.

● Detection:

● Pros: On-demand protect ion without inf luence on benign workloads.

● Cons: High false posit ive penalty; May be evaded by advanced spy.
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Typical Iteration of Information Leakage

● Spy’s Setup : Setup hardware status to make future activities of victim 

observable.

● Victim’s Leakage : Victim’s secret-dependent activities change hardware status.

● Spy’s Observation : Spy observes status changed by victim and decode the 

secret.



Example Iteration of Cache Side Channel

▪ All cache timing channel attacks involved three phases:

➚Spy’s Setup: Spy removes critical memory lines from cache.

➚Victim’s Leakage: Victim accesses critical memory lines.

➚Spy’s Observation: Spy reloads memory lines and measures latency.



Iterations of Various Side Channels



Capturing Iterations of Information Leakage

● Marker Event: a crit ical event which appears in no less than half of i terations of a side 

channel attack

● Target Event: a series of events that occur inbetween marker events.



Capturing Iterations of Information Leakage

● Reuse Distance: The number of target events between a pair of repetitive 

marker events.

● Multiple positive reuse distance value would be observed in side channels.

Event Pattern of Typical Side Channel



Filtering the Events

● For some types of microarchitecture side channels, marker events of a side 

channel could happen within specific regions.

● We define these hardware events that has the same event type with the marker 

events as marker candidate.

● Aggressive fi ltering methods are needed before detection in order to reduce the 

number of marker candidates.



Case Study: Detecting Speculation-based

Attack

● Typical Implementation of Speculation-based Side Channel.



Case Study: Detecting Speculation-based

Attack

● Repetitive Activities of Speculation-based Side Channel

● Event Definition

● Marker Event: Conflict Misses

● Target Event: Mis-speculated Load Instructions



Case Study: Detecting Speculation-based

Attack

● Overall Design



Case Study: Detecting Speculation-based

Attack

● Experimental Setups

● Gem5 with four x86 cores, 32 KB private L1 and 4 MB, 8 -way shared L2 

caches.

● Implemnt Spectre v1 and v2 to evaluate our design.

● Both adversaries repeat attack iteration 100 times for single byte

● Both adversaries manage to steal 40 bytes of the secret.

● We implement adversary with different transmission rates.



● Efficiency of Event Filtering

The f irst level event f i l tering remove 97% of cache sets potential ly with one of the events

Case Study: Detecting Speculation-based

Attack



● Number of Posit ive Reuse Distance Observed in Speculation -based Side Channels

● Number of Posit ive Reuse Distance Observed in Benign Workloads

Case Study: Detecting Speculation-based

Attack



● Obfuscating Side Channel using Prefetcher

● SC-K9 provides rich information for further defense.

● In this case study, we leverage prefetcher to obfuscate victim’s leakage 

phase.

Case Study: Detecting Speculation-based

Attack

Before Obfuscation After Obfuscation



Conclusion

● We leverage the fundamental behavior of side channels and develop a generic

framework to capture the repetitive interference observed in these attacks.

● We evaluate SC-K9 using recently notorious case study: speculation -based 

cache.

● Our experimental results show that SC-K9 can effectively distinguish

adversaries from various types of benign workloads with high accuracy.

● Our evaluation shows that the information provided by SC-K9 can be used in 

efficient defense mechanism, which can make it difficult or impossible for the

spy to recover any leaked secrets.
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