
SC-K9: A Self-synchronizing Detection

Framework to Counter Microarchitecture

Side Channels

Hongyu Fang , Mi los Doroslovacki , Guru Venkataramani

The George Washington Universi ty

Washington, DC, USA

Acknowledgments: US National Science Foundation, Office of Naval Research

Security Challenge on Shared Platforms

● Applications from mutually untrusted sources share one physical machine.

● Shared hardware (last level cache, random number generator, and GPU) can be

media of information leakage.

Virtual Machine 1
….App1 App2 AppN OS

Virtual Machine 2
….App1 App2 AppN OS

Hardware: Last Level Cache, Storage, Network

2

Challenges to Defend against Cache Timing

Channel

● The only thing adversaries do is to modulate their accesses to

microarchitecture.

● Shared microarchitecture cannot be disabled without performance degradation.

● Microarchitecture side channel can be implemented with various protocols.

3

Pros and Cons of Prior Defense Mechanisms

● Microarchitecture Part it ioning:

● Pros: Straightforward mit igation with exist ing hardware.

● Cons: Either requires SW-HW co-design or impact performance of benign workloads.

● Secured Hardware Design:

● Pros: Defense without l imit ing avai lable hard resource of each process.

● Cons: Complicated to implement; Annul the optimizations.

● Detection:

● Pros: On-demand protect ion without inf luence on benign workloads.

● Cons: High false posit ive penalty; May be evaded by advanced spy.

4

Typical Iteration of Information Leakage

● Spy’s Setup : Setup hardware status to make future activities of victim

observable.

● Victim’s Leakage : Victim’s secret-dependent activities change hardware status.

● Spy’s Observation : Spy observes status changed by victim and decode the

secret.

Example Iteration of Cache Side Channel

▪ All cache timing channel attacks involved three phases:

➚Spy’s Setup: Spy removes critical memory lines from cache.

➚Victim’s Leakage: Victim accesses critical memory lines.

➚Spy’s Observation: Spy reloads memory lines and measures latency.

Iterations of Various Side Channels

Capturing Iterations of Information Leakage

● Marker Event: a crit ical event which appears in no less than half of i terations of a side

channel attack

● Target Event: a series of events that occur inbetween marker events.

Capturing Iterations of Information Leakage

● Reuse Distance: The number of target events between a pair of repetitive

marker events.

● Multiple positive reuse distance value would be observed in side channels.

Event Pattern of Typical Side Channel

Filtering the Events

● For some types of microarchitecture side channels, marker events of a side

channel could happen within specific regions.

● We define these hardware events that has the same event type with the marker

events as marker candidate.

● Aggressive fi ltering methods are needed before detection in order to reduce the

number of marker candidates.

Case Study: Detecting Speculation-based

Attack

● Typical Implementation of Speculation-based Side Channel.

Case Study: Detecting Speculation-based

Attack

● Repetitive Activities of Speculation-based Side Channel

● Event Definition

● Marker Event: Conflict Misses

● Target Event: Mis-speculated Load Instructions

Case Study: Detecting Speculation-based

Attack

● Overall Design

Case Study: Detecting Speculation-based

Attack

● Experimental Setups

● Gem5 with four x86 cores, 32 KB private L1 and 4 MB, 8 -way shared L2

caches.

● Implemnt Spectre v1 and v2 to evaluate our design.

● Both adversaries repeat attack iteration 100 times for single byte

● Both adversaries manage to steal 40 bytes of the secret.

● We implement adversary with different transmission rates.

● Efficiency of Event Filtering

The f irst level event f i l tering remove 97% of cache sets potential ly with one of the events

Case Study: Detecting Speculation-based

Attack

● Number of Posit ive Reuse Distance Observed in Speculation -based Side Channels

● Number of Posit ive Reuse Distance Observed in Benign Workloads

Case Study: Detecting Speculation-based

Attack

● Obfuscating Side Channel using Prefetcher

● SC-K9 provides rich information for further defense.

● In this case study, we leverage prefetcher to obfuscate victim’s leakage

phase.

Case Study: Detecting Speculation-based

Attack

Before Obfuscation After Obfuscation

Conclusion

● We leverage the fundamental behavior of side channels and develop a generic

framework to capture the repetitive interference observed in these attacks.

● We evaluate SC-K9 using recently notorious case study: speculation -based

cache.

● Our experimental results show that SC-K9 can effectively distinguish

adversaries from various types of benign workloads with high accuracy.

● Our evaluation shows that the information provided by SC-K9 can be used in

efficient defense mechanism, which can make it difficult or impossible for the

spy to recover any leaked secrets.

	SC-K9: A Self-synchronizing Detection Framework to Counter Microarchitecture Side Channels
	Security Challenge on Shared Platforms
	Challenges to Defend against Cache Timing Channel
	Pros and Cons of Prior Defense Mechanisms
	Typical Iteration of Information Leakage
	Example Iteration of Cache Side Channel
	Iterations of Various Side Channels
	Capturing Iterations of Information Leakage
	Capturing Iterations of Information Leakage
	Filtering the Events
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Conclusion

