SC-K9: A Self-synchronizing Detection
Framework to Counter Microarchitecture
Side Channels

Hongyu Fang, Milos Doroslovacki, Guru Venkataramani
The George Washington University
Washington, DC, USA

Acknowledgments: US National Science Foundation, Office of Naval Research

Security Challenge on Shared Platforms

e Applications from mutually untrusted sources share one physical machine.

e Shared hardware (last level cache, random number generator, and GPU) can be
media of information leakage.

g Virtual Machine 1 (BB Virtual Machine 2)
\[Appl][Appz] ... [AppN] (oS) (Appl) [App2] . (AppN) (L OS]/
Hardware: Last Level Cache, Storage, Network

o J

Challenges to Defend against Cache Timing
Channel

e The only thing adversaries do is to modulate their accesses to
microarchitecture.

e Shared microarchitecture cannot be disabled without performance degradation.

e Microarchitecture side channel can be implemented with various protocols.

Pros and Cons of Prior Defense Mechanisms

e Microarchitecture Partitioning:

e Pros: Straightforward mitigation with existing hardware.

e Cons: Either requires SW-HW co-design or impact performance of benign workloads.
e Secured Hardware Design:

e Pros: Defense without limiting available hard resource of each process.

e Cons: Complicated to implement; Annul the optimizations.
e Detection:

e Pros: On-demand protection without influence on benign workloads.

e Cons: High false positive penalty; May be evaded by advanced spy.

Typical Iteration of Information Leakage

e Spy’s Setup: Setup hardware status to make future activities of victim
observable.

e Victim’s Leakage: Victim's secret-dependent activities change hardware status.

e Spy’s Observation: Spy observes status changed by victim and decode the
secret.

Example Iteration of Cache Side Channel

= All cache timing channel attacks involved three phases:
7 Spy’s Setup: Spy removes critical memory lines from cache.
7Victim’s Leakage: Victim accesses critical memory lines.
7Spy’s Observation: Spy reloads memory lines and measures latency.

Flush critical memory lines. Activity 1 a c|c|c|c| Reload critical memory lines.

Flush+Reload chag‘e"é“f‘gs ; Y/ o | x| x| x| x

e Low Latency High Latency

ACtIVIty 2 g Infer Act. 1 Infer Act. 2

Evict critical memory lines. Activity 1 C|C| C| C| Reload critical memory lines.

Evict+Reload Critical Mem. Lines Spy's Mem. Lines S8 8 S| S/ L S or | x| x| x| x
CCCC[>SSSS i Low Lat High Lat

Activity 2% A SISIS[S]] At infer Act. 2.

Evict critical memory lines. Activity 1 ClC C|C Reload spy’s memory lines.

Prime+Probe Cntical Mem. Lines Spy's Mem. Lines SIS S S| S/ V] S or | xl x| x| x

ClC|C| C |:> S| S| §|S Activity2 S/ S| S| S Low Latency High Latency

Infer Act. 2 Infer Act. 1

lterations of Various Side Channels

Attack Variant

Spy’s Setup

Victim’s Leakage

Spyv’s Observation

BranchScope[4] Spyv manipulates Victim executes Spy executes
predictor status branch primed branches
TLBleed[10] Spy occupies TLB Victim accesses Spy accesses
set with its addrs. memory lines occupied TLB
Cache Spy occupies Victim accesses Spy probes
Prime+ Probe[15] a cache set occupied cache set the cache set
Cache Spy flushes Victim accesses Spy reloads
Flush+Reload [22] victim mem. lines | victim mem. lines | flushed mem. lines

Speculation-based

side channel[13, 14]

Spy flushes
exploited array

Victim transiently
loads
secret-dependent

addr.

Spy reloads
exploited array

Capturing Iterations of Information Leakage

e Marker Event: a critical event which appears in no less than half of iterations of a side
channel attack

e Target Event: a series of events that occur inbetween marker events.

Spy’s Setup Victim's Leakage Spy’s Observation Spy’s Setup
Critical Event |:> Critical Event i> Critical Event [> Critical Event
Marker Event Target Event Critical Event Marker Event

Capturing Iterations of Information Leakage

e Reuse Distance: The number of target events between a pair of repetitive
marker events.

e Multiple positive reuse distance value would be observed in side channels.

Marker Marker Marker Marker Marker Marker
Event Event Event Event Event Event
ﬁ = 1 Target ﬁ > 1 Target ﬁ > 1 Target ﬁ > 1 Target ﬁ > 1 Target ﬁ
Event Event Event Event Event
| D
Time

Event Pattern of Typical Side Channel

Filtering the Events

e For some types of microarchitecture side channels, marker events of a side
channel could happen within specific regions.

e We define these hardware events that has the same event type with the marker

events as marker candidate.

e Aggressive filtering methods are needed before detection in order to reduce the

number of marker candidates.

No target events in Discard Continuous Zero

the same region \:ms& Distance.
Marker Candidates ————" Reuésunit?‘;:"m —" Further Synchronization

Target events exist in the Positive Reuse
same surveillance area Distance

Case Study: Detecting Speculation-based

Attack

e Typical Implementation of Speculation-based Side Channel.

Cache

e_array[0]

e_array[1]

e_array[255*512]

Flush

)

Cache

Speculatively load
e_array[secret * 512]
and squash the load

after execution. >

Cache

e_array[42*512]

Reload

)

Cache

High Latency

Low Latency

High Latency

Case Study: Detecting Speculation-based
Attack

e Repetitive Activities of Speculation-based Side Channel

Attack Variant Byte/Iteration Byte Accuracy

Spectre vl 1 99%
Spectre v2 4 98%
Meltdown 1 94%
Foreshadow 1 70 - 99%

e Event Definition

e Marker Event: Conflict Misses

e Target Event: Mis-speculated Load Instructions

Case Study: Detecting Speculation-based
Attack

e Overall Design

Addr. Translation
Dispatcher Load/Store 1

Memory Hierarchy

Speculative Load
Buffer Conflict Tracker
Evicting | Evicted | | |
1 Inst Physical Addr Addr
Reorder Buffer Pointer Addr.

Addr. of evicted mem. line

Squashed and Committed Insts

Event Filter ‘
Filtered EventAfiribufes |
Defense Actuator _
of Positive Exploited Addr. | Intelligence Log Reuse Distance Buffer
Reuse Dist.

Cache Miss Addr. | Squashed Load
Register Accumulator

Prefetch Requests to
Obfuscate Adversary

Case Study: Detecting Speculation-based
Attack

e Experimental Setups

e Gem5 with four x86 cores, 32 KB private L1 and 4 MB, 8-way shared L2
caches.

e Implemnt Spectre vl and v2 to evaluate our design.
e Both adversaries repeat attack iteration 100 times for single byte
e Both adversaries manage to steal 40 bytes of the secret.

e We implement adversary with different transmission rates.

Attack Variant Iteration/Second

Spectre-vz-1 0.5k
Spectre-vz-2 1.5k
Spectre-vz-3 3k
Spectre-vz-4 bk

Spectre-vz-5 10k

Case Study: Detecting Speculation-based
Attack

e Efficiency of Event Filtering

a1l |

v \}:'- s (L Q6 o ﬂe. ot cf\ PRGB! Re® et 2 ®
ﬁaq 1.‘9 A e,a P e#} Ggf?o e ﬂ‘.ﬂr o ,{@‘“ A\ ,.DQ“L « ﬁaﬁ‘ o Bﬁ? \& .;.\ o ﬂaﬂeﬂ‘
o

MJ L
1

Percentage of Cache Sets
with Two Evt. Type (%)
H

=]

The first level event filtering remove 97% of cache sets potentially with one of the events

Case Study: Detecting Speculation-based
Attack

e Number of Positive Reuse Distance Observed in Speculation-based Side Channels

25000

o
=] [=]
o o

1

20000 4

= 0
[=]
L=

15000 1

10000 -

= ¥

= =

= (=
L

5000 4

of positive reuse
distance samples
e
[]
=

of positive reuse
distance samples

L]
|

U_
Spec-v2-1 Specv2-2 Specvia-3 Spec-v2-4 SpeC-v2-5 Spec-v2-1 Spec-v2-2 Spec-v2-3 Spec-v2-4 Spec-v2-5
iteration/second iteration/second

(a) Number of positive reuse distance samples of Spectre v1 in

i Cf _ (b) Number of positive reuse distance samples of Spectre v2 in
erent frequencies

different frequencies

e Number of Positive Reuse Distance Observed in Benign Workloads

Process Name Count of Positive Reuse Distances
benignSpec v1 0
benignSpec v2 0
hmmer 3
Other SPEC2006 0

Number of Observed
Cache Hit

Case Study: Detecting Speculation-based
Attack

e Obfuscating Side Channel using Prefetcher

100 -

80 -

60 -

40 A

20 A

secret value = 84

50

100

Index of Memory Line

Before Obfuscation

150

200

250

Number of Observed

Cache Hit

100 -

80 A

60 -

40 A

20 A

e SC-K9 provides rich information for further defense.

e I[n this case study, we leverage prefetcher to obfuscate victim’s leakage
phase.

secret value = 84

50

100 150 200
Index of Memory Line

After Obfuscation

250

Conclusion

e \We leverage the fundamental behavior of side channels and develop a generic
framework to capture the repetitive interference observed in these attacks.

e We evaluate SC-K9 using recently notorious case study: speculation-based
cache.

e Our experimental results show that SC-K9 can effectively distinguish
adversaries from various types of benign workloads with high accuracy.

e Our evaluation shows that the information provided by SC-K9 can be used in
efficient defense mechanism, which can make it difficult or impossible for the
spy to recover any leaked secrets.

	SC-K9: A Self-synchronizing Detection Framework to Counter Microarchitecture Side Channels
	Security Challenge on Shared Platforms
	Challenges to Defend against Cache Timing Channel
	Pros and Cons of Prior Defense Mechanisms
	Typical Iteration of Information Leakage
	Example Iteration of Cache Side Channel
	Iterations of Various Side Channels
	Capturing Iterations of Information Leakage
	Capturing Iterations of Information Leakage
	Filtering the Events
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Case Study: Detecting Speculation-based Attack
	Conclusion

