
CacheGuard: A Behavior Model Checker
for Cache Timing Side-Channel Security

Zihan Xu1, Lingfeng Yin1, Yongqiang Lyu1, Haixia Wang1, Gang
Qu2, and Dongsheng Wang1

1Tsinghua University, 2University of Maryland

ASPDAC-2022, Jan 17th

Threats of Cache Side-Channel Attacks

• Emerging threats
• Spectre, Meltdown, Foreshadow…

• ... and long-lasting vulnerabilities

Cache

Secret
Address 𝑢

Timing
Information

Example of Cache Side-Channel Attacks

Shared Cache

• Flush + Reload [USENIX-SEC’ 14]

Cache Lines Memory Region

1. Flush

𝑢

Example of Cache Side-Channel Attacks

Shared Cache

• Flush + Reload [USENIX-SEC’ 14]

Cache Lines Memory Region

𝑢

1. Flush

2. Load secret
address 𝑢

𝑎

𝑢𝑢

Example of Cache Side-Channel Attacks

Shared Cache

• Flush + Reload [USENIX-SEC’ 14]

Cache Lines Memory Region

Miss

1. Flush

2. Load secret
address 𝑢

3. Reload probe
address 𝑎
Hit: 𝑢 = 𝑎

Miss: 𝑢 ≠ 𝑎

𝑢

Example of Cache Side-Channel Attacks

Shared Cache

• Flush + Reload [USENIX-SEC’ 14]

1. Flush

Cache Lines Memory Region

𝑢

2. Load secret
address 𝑢

3. Reload probe
address 𝑎
Hit: 𝑢 = 𝑎

Miss: 𝑢 ≠ 𝑎

Miss

Hit

Miss

Miss

Wait and repeat Wait and repeat

Key aspects of Cache Side-channel Threat models

Cache

Unknown
Secret
Address 𝒖

Known
Probe
Address 𝒂

Timing information

• Secret address 𝑢

•Known address 𝑎

•A series of operations

• Timing observation

Threat Models of Side-Channel Security

Different Cache Side-Channel Attacks

• Evict + Time, Prime + Probe, Bernstein’s Attacks…

• Exploits different aspect of cache behavior
• Directly observe timing of cache hit
• Write-back policy on flush operations
• Eviction by confliction

•With different threat model
• External interference or internal interference

Secure Cache Designs

•Partitioned cache
• SP* Cache, DAWG Cache , SecVerilog Cache, …

•Randomized cache
• Random Fill cache, CEASER Cache, …

•Hybrid cache
• HYBCACHE, …

•Can those caches defend all side-channel
threats?
• Need fully check!

Behavior Analysis of Secure Caches

• Finite-state machine model of cache side-channel [Zhang, 2014] and
statistical cache behavior analysis [He, 2017].

• Build model for known attack behavior, and analyze cache behavior
based on certain practical attacks.

• Limitation:
• Can only evaluate well-known side-channel attacks.

T. Zhang and R. B. Lee. “New models of cache architectures characterizing information leakage from cache side channels.”
Proceedings of the 30th annual computer security applications conference, pp. 96–105, 2014.
Z. He and R. B. Lee. “How secure is your cache against side-channel attacks?” Proceedings of the 50th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 341–353, 2017

Formal Verification of Secure Caches

• Information flow-based Secure Cache designs

• E.g. SecVerilog Cache

• Formal verification of specification of information flow through
processor, based on security labels.

• Limitation:
• Can not defend attacks based on internal interference.

Zhang, Danfeng, et al. "A hardware design language for timing-sensitive information-flow security." Acm Sigplan Notices
50.4 (2015): 503-516.

Three-step Model for Cache Security
• Use three memory operations to model current cache attacks

• Enumerate attacks within three steps to discover new attacks.

• Limitation:
• Relies prose simplification rules that have defects.
• Threat model based on standard cache, not appliable to secure cache designs.

Deng, W. Xiong, and J. Szefer, "A benchmark suite for evaluatingcaches' vulnerability to timing attacks," in Proceedings
of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating
Systems, 2020, pp. 683–697

Checking Secure Caches

Cache design

Security specification

Cache Behavior
Model

Model Checking

Modeling Cache Behavior

• Formally Modeling Cache Behavior
• Operation Type from Three-Step Model

𝑉𝑎
𝑖𝑛𝑣Issuer

V: Victim
A: Attacker

Type
Load/Store
Inv: Flush

Abstract Address Type
Relationship with probe

address 𝑎

Modeling Cache Behavior

• Possible relationship with address 𝑎 .

Cache Lines Memory Region

𝒂

𝒃

𝒃

𝒅

𝑵𝑰𝑩

Probe address

Sensitive Region

Non-Sensitive Region

Mapped to another cache line

Modeling Cache Behavior

• Attacker’s objective

• Three possible 𝑢 types have three timing results

• Distinguish timing difference for different 𝑢 in the same operation
sequence

𝑢 = 𝑎 𝑢 = 𝑏 𝑢 = 𝑁𝐼𝐵

Fast Slow

𝐴𝑑 → 𝑉𝑢 → 𝐴𝑎

𝐴𝑑 → 𝑉𝑎 → 𝐴𝑎

𝐴𝑑 → 𝑉𝑏 → 𝐴𝑎

𝐴𝑑 → 𝑉𝑁𝐼𝐵 → 𝐴𝑎

Modeling Cache Behavior

• Build paralleled cache behavior
model for each 𝑢 value.

• Address 𝑢 in the raw operation
sequence will be replaced into
𝑎, 𝑏 and 𝑁𝐼𝐵 respectively.

• Timing from three paralleled
models is checked against the
timing specification.

𝑜𝑝|𝑢=𝑎

𝑜𝑝|𝑢=𝑏

𝑜𝑝|𝑢=𝑁𝐼𝐵

Paralleled cache
behavior model

Paralleled cache
behavior model

Paralleled cache
behavior model

Check
timing

Initial cache
line states

Modeling Cache Behavior - Initial States

• If the initial cache state is known,
the timing will be deterministic.

• In practical attack, the cache state is
unknown to the attacker

• Solution for ambiguous timing:
• Build sub-models for each possible

initial cache states.
• Timings from sub-models will be

summarized to fast/slow/ambiguous
timing.

Sub-Model
(init state S0)

Sub-Model
(init state S1)

Sub-Model
(init state Sn)

……

C
h

e
ck Tim

in
g

𝑜𝑝

Sub-models in paralleled model

Paralleled cache
behavior model

Timing Check Principle

• Timing checking principle

• If three timing is same -> no
vulnerability.

• If at least one timing is ambiguous,
the timing overlaps -> weak
vulnerability.

• Otherwise, the timing is different
and non-ambiguous -> strong
exploitable vulnerability.

• Use model checker to check
security specification.

attack := case
(PM0_timing = PM1_timing &

PM0_timing = PM2_timing)
: notVul;

(PM0_timing = ambiguous |
PM1_timing = ambiguous |
PM2_timing = ambiguous)
: weakVul;

TRUE: strongVul;
esac;
SPEC AG !(attack = strongVul)

Overall Cache Model

𝑜𝑝

𝑜𝑝|𝑢=𝑎

𝑜𝑝|𝑢=𝑏

𝑜𝑝|𝑢=𝑁𝐼𝐵

Paralleled cache
behavior model

Paralleled cache
behavior model

Paralleled cache
behavior model

Check
timing

Initial cache
line states

Sub-Model
(init state S0)

Sub-Model
(init state S1)

Sub-Model
(init state Sn)

……

C
h

e
ck Tim

in
g

𝑜𝑝

Sub-models in paralleled model

Experiment Setup

• NuSMV 2.6.0 model checker with our path enumeration extension

• Specification
• Quad-core 3.9GHz I5-8300H CPU (2 cores used)

• 8GB memory

• Ubuntu 18.04.5 LTS

• Cache designs
• Standard cache

• Partition cache: SP* cache

• Randomized cache: Random Fill cache, CEASER cache.

22

Finding Side-channel Attacks

• Covering all possible attacks
• Operations path -> Attack sequence

• All vulnerable states must be
covered.

• Non-redundant representation.

• Find all shortest paths

𝐼

𝑆
…

𝑨𝒅 𝑽𝒖
memory
operation

𝑇𝑘

𝑽𝒖

𝑆

𝑨𝒂

Vulnerable
state

redundant

Verification results

24

• Attacks found are generalized into 26 attack strategies based on their
interference and operation type.

• None of those cache are fully safe.

Findings on Standard Cache

• Three new side-channel strategies that can not be covered by the
three-step model.

Findings on SP Cache

• Additional side-channel attacks based on the design defects of SP*
cache.

• Undetectable by benchmarks based on standard cache.

Case Study: New attacks on SP* cache

• Reload + Flush + Time
• 𝑽𝒂

𝒊𝒏𝒗 → 𝑨𝒊𝒏𝒗 → 𝑨𝒂 → 𝑽𝒖
𝒊𝒏𝒗 → 𝑽𝒖

• Address 𝑢 had been evicted from
the private cache region, so it can
only hit in the attacker-controlled
region.

• Do not work on standard cache.

Private Cache Shared Cache

𝑎𝑎 𝑢

𝑉𝑢

Evaluation on Random Fill Cache

• Uses randomized fill requests with data from a range of addresses to
fill the cache at cache miss.

• Vulnerable to 4 attack strategies

• i.e., Flush + Time, Evict + Time, Bernstein’s Attack, and newly
discovered Flush + Flush + Time.

• All discovered attacks must start with the operation of 𝑉𝑢.

• Attack will only happen if secret 𝑢 is in the cache before random
filling strategy starts.

Evaluation on CEASER cache

• Use encrypted address to calculate the mapping from address to
cache set.

• Can successfully defend against conflict-based attacks.

• Still vulnerable to 6 eviction-based attack strategies

• i.e., Flush + Reload, Evict + Reload, Flush + Time, Reload + Time,
Cache Internal Collision and Flush + Probe.

Conclusion

• Presents a model checking technique for cache security.

• Discovered attacks belongs to 26 attack strategies, including 5 new
attack strategies.

• A complete evaluation of secure cache designs for their protection
capabilities.

• Help develop secure cache.

