
Lightweight and Secure Branch
Predictors against Spectre Attacks

Congcong Chen, Chaoqun Shen, Jiliang Zhang*
College of Computer Science and Electronic Engineering

Hunan University, Changsha, China
January 17 to January 20, 2022

Contents

Background & MotivationPart 1 Background & MotivationPart 1

The Proposed LS-BPPart 2

Security AnalysisPart 3

Evaluation & SummaryPart 4

3

Background

A code snippet of Spectre attack

① Poisoning phase

② Execution phase

③ Measurement phase

Let x = secret – T, that is, T[x] = *secret

Memory
User Space Kernel Space

secret

T[x]

Probe

Probe[secret]
Cache

A Example of Spectre Attack
Weak states

Strong states

4

Background
How Spectre Attacks Happen:

Impact of Spectre Attacks Today

Affect billions of Intel,
AMD, and ARM devices

Intel's shares fell 5.2 percent in
two days, wiping $11.3 billion
off its market value

$11.3 billion

b) Side-channel attacksa) Branch mistraining

Shared Memory

5

Spectre Attack Types
Spectre attack variants

The root cause of all these attacks

Sharing branch predictors
among mutually distrusting processes

It’s so hard to defend against Spectre attacks!

6

Existing Spectre defenses

Eliminating or reducing the accuracy of covert channels
ü The covert channels can be eliminated by making the execution time

constant or disturbing the access time to interfere with the attacker’s
measurements

Limiting transient execution to affect microarchitectural
states.
ü It makes the changes of microarchitectural state invisible to the attacker.

Limiting the execution of transient instructions.
ü These schemes find the gadget in the target code that may leak secrets by

static or dynamic analysis. Then lfence instructions are used to serialize
branches to prevent transient execution from leaking secrets.

Isolation-based secure branch predictors (BPs)
ü These schemes refresh BPs at context switches or use hardware to isolate

BPs in different process spaces

However, most of these methods only protect the cache
hierarchy, the attackers can still exploit other covert channels.

However, with the strict enforcement of security policies,
most of them introduce unacceptable performance overhead

However, they need to capture the code fragments
in the binary code that can be exploited by the attacker,

which produces high false negative and false positive rates

However, these strategies either introduce a large context
switching overhead or have low hardware resource utilization

7

Motivation

8

Our Works

A lightweight and secure branch predictor (LS-BP) is designed

The proposed LS-BP does not restrict speculative execution to
minimize performance overhead.

Goal: Achieve low-overhead and high-security defense on Spectre

Our main contributions:

Detail security analysis against Spectre attacks is given

We show how the LS-BP can break the shared BP among mutually
distrusting processes, thereby mitigating typical Spectre-PHT and
Spectre-BTB attacks.

The proposed LS-BP is implemented and evaluated in detail

We simulate four different BPs to evaluate our design on gem5 with
SPEC2006. Experimental results show that the performance overhead
of LS-BP is less than 3%.

Contents

Background & MotivationPart 1

The Proposed LS-BPPart 2

Security AnalysisPart 3

Evaluation & SummaryPart 4

The Proposed LS-BPPart 2

10

Threat Model

Suppose the attacker is co-located with the victim on a same physical core

The attacker can control over a process running on the target system with normal
user privileges. We refer to this process as the spy process.

Goal: Eliminate Spectre attacks related to the branch
misprediction, rather than all speculative execution attacks

Suppose the execution of the victim’s program is credible

The attacker cannot modify its program control flow or access memory directly to
guarantee the confidentiality and integrity of the victim’s information during the
normal execution.

Suppose the attacker knows the gadget address that could disclose secret

The attacker can manipulate the input to mistrain the branch.

11

The Proposed LS-BP
The overall design

l The process identification (PID) is introduced
l The full branch source address bits are used
l PUF is used to generate a unique index

without increasing the number of index bits

12

The Proposed LS-BP
Implementation of LS-BTB Implementation of LS-PHT

The reverse engineering of the BTB addressing

a) The LS-BTB addressing

b) LS-PHT on bi-mode predictor

c) LS-PHT on TAGE_SC_L predictor

Contents

Background & MotivationPart 1

The Proposed LS-BPPart 2

Security AnalysisPart 3

Evaluation & SummaryPart 4

Security AnalysisPart 3

14

Security Analysis
mistraining a branch

n Same-address-space mistraining. with the full virtual address
bits for branch addressing, there is no congruent branch with the
victim branch because all branches are located at different virtual
addresses.

n Cross-address-space mistraining. After adding PID, a process’s
history in the Prime phase becomes unrecognizable in the Probe
phase due to context switches

15

Security Analysis
A PoC of branch mistraining

The experimental results show
the accuracy of training BTB and
PHT on a baseline without any
defense is 97.2% and 98.5%,
respectively. However, with LS-BP
enabled, the attacker can hardly
a f f e c t t h e v i c t i m ’ s b r a n c h
prediction (the accuracy is less
than 1%).

16

Security Analysis
Why is PUF introduced

l Each PUF has its own unique mapping relationship that differs from the
traditional mapping schemes. Even if an attacker learns the branch
mapping relationship of a machine, he cannot directly use it for other
machines.

l PUF is a one-way physical cryptographic function. Inputting different
challenges to the PUF wil l generate unique and unpredictable
responses.

l the PUF response is generated in real-time without storing the key,
which makes our scheme higher security against memory-based
attacks.

Response (t)

Response (t+� t)

Challenge (t)

Challenge (t+� t)

Contents

Background & MotivationPart 1

The Proposed LS-BPPart 2

Security AnalysisPart 3

Evaluation & SummaryPart 4 Evaluation & SummaryPart 4

18

Experimental Setup

l Four different PHT predictors:
including bi-mode, Tournament,
TAGE, and TAGE SC L

l The gem5 x86 simulator setup

l We randomly se lec ted 12
c o m b i n a t i o n s f r o m t h e
SPEC2006 benchmark suite

19

Experimental Results
l The performance of LS-BTB l The performance of LS-PHT

l Combination of LS-PHT and LS-BTB l Comparison

In context switching scenarios,
the performance overhead of
LS-BP (1.71% ∼ 2 .95%) is
generally lower for same PHT
pred ic to rs in [18] (2 .3% ∼
4.8%).

[18] L. T. Zhao, P. N. Li, R. Hou, et al. “A Lightweight Isolation
Mechanism for Secure Branch Predictors,” DAC2021.

20

Summary

l we design a lightweight and secure branch prediction (LS-BP) to
provide secure isolation for branch prediction state of same-
address-space and cross-address-space.

l The proposed LS-BP can effectively mitigate Spectre attacks
based on BTB and PHT

l Experimental results on four branch predictors show that LS-BP
brings less than 3% performance overhead. We believe that such
a secure branch predictor wi l l be integrated into future
processors.

Thank you!
Q&A

chencongcong@hnu.edu.cn

