ASIA SOUTH PACIFIC

JESIGN
AUTONATION
[ONFERENCE

Lightweight and Secure Branch
Predictors against Spectre Attacks

Congcong Chen, Chaoqun Shen, Jiliang Zhang*
College of Computer Science and Electronic Engineering
Hunan University, Changsha, China
January 17 to January 20, 2022

=WTIY.

)
i HUNAN UNIVERSITY

Contents

&

\ ! U4

Background & Motivation

The Proposed LS-BP

Security Analysis

Evaluation & Summary

.5' Background

%+ A Example of Spectre Attack @O Poisoning phase

Weak states

PHT
if (x < T_size) olojolo N T T 1
y = Probe[T[x]*256]; @IQIGIG‘ R @
BROB| TR
A code snippet of Spectre attack mxmxexel N N N N
U

2 Execution phase Let x = secret — T, that is, T[x] = *secret
Probe secret
Memory [N ENEN RN NN
User Space T[x] Kernel Space

® Measurement phase

Probe[secret]

Cache [N = .

- _________________________H

.5' Background

&

+* How Spectre Attacks Happen:

FAPEESE £ Process B Shared Memory o
Ictum
0X0001 | Branch A | | 0X5100 | Branch B Aiacker

Patial address index

_ ’ dCCess
ha 4
0X00 T.ENNT
ONES w
Shared branch predictor victirr:faa:;:;essed Victim d‘igolll:;access
a) Branch mistraining b) Side-channel attacks

&

+* Impact of Spectre Attacks Today

ﬁj $11.3 billion

Intel's shares fell 5.2 percent in
Affect billions of Intel, two days, wiping $11.3 billion
AMD, and ARM devices off its market value

#

.5' Spectre Attack Types

+%* Spectre attack variants

Variants Component Primitive
T e S Coxmes
Spectre V1.2 PTE Read-only Protection Bypass
Spectre-BTB(V2) BTB Branch Target Injection
Spectre V4 SB Speculative Store Bypass
BranchScope PHT Directional Branch Prediction
Spectre-RSB R5B Return Stack Buffer Speculative

s The root cause of all these attacks

Sharing branch predictors
among mutually distrusting processes

It's so hard to defend against Spectre attacks!

.5' Existing Spectre defenses

However, most of these methods only protect the cache
hierarchy, the attackers can still exploit other covert channels.

However, with the strict enforcement of security policies,
most of them introduce unacceptable performance overhead

However, they need to capture the code fragments
In the binary code that can be exploited by the attacker,
which produces high false negative and false positive rates

However, these strategies either introduce a large context
switching overhead or have low hardware resource utilization

- ____________________________

J° Motivation

With these existing Spectre defenses,

[t's difficult to balance the security and
overhead

?

-

do A
R ' |

.5' Our Works

¢+ Goal: Achieve low-overhead and high-security defense on Spectre

s+ Our main contributions:

4 A lightweight and secure branch predictor (LS-BP) is designed

The proposed LS-BP does not restrict speculative execution to
minimize performance overhead.

4 Detail security analysis against Spectre attacks is given

We show how the LS-BP can break the shared BP among mutually
distrusting processes, thereby mitigating typical Spectre-PHT and
Spectre-BTB attacks.

4 The proposed LS-BP is implemented and evaluated in detail

We simulate four different BPs to evaluate our design on gem5 with
SPEC2006. Experimental results show that the performance overhead
of LS-BP is less than 3%.

é

L WA The Proposed LS-BP

Security Analysis]

Evaluation & Summary]

Background & Motivation]

Contents

.5' Threat Model

Suppose the attacker is co-located with the victim on a same physical core

The attacker can control over a process running on the target system with normal
user privileges. We refer to this process as the spy process.

Suppose the execution of the victim’s program is credible

The attacker cannot modify its program control flow or access memory directly to
guarantee the confidentiality and integrity of the victim’s information during the
normal execution.

Suppose the attacker knows the gadget address that could disclose secret

The attacker can manipulate the input to mistrain the branch.

+* Goal: Eliminate Spectre attacks related to the branch
misprediction, rather than all speculative execution attacks

N |

.5' The Proposed LS-BP

¢ The overall design

\
I
|

! LSM \

| PID | Full Branch PC | !

| MIT=T1111] |

| |

I\ PUF j

N — e A I _—— PHT
BTB Selector Table

(Source 1 Target 1) @IQIGIO

¥

M
- lé'}J_' Prediction
GHR 1 s
[FIN[TININ[TIN[T[T

— Target Prediction

Source 2 | Target 2

Source 3 | Target 3

\Source 4 | Target 4

® The process identification (PID) is introduced

® The full branch source address bits are used

® PUF is used to generate a unique index
without increasing the number of index bits

N |

J* The Proposed LS-BP

¢ Implementation of LS-BTB

Haswell

30

0
{Vil‘tual Address: OxAAAA M
e — |

BTB

Source

Target

BHR

PID d
Taken PHT notTaken PHT

2

SREE)

Branch_PC

%+ Implementation of LS-PHT

Choice PHT

2

A

S

SEEE,

LT,

| %
Prediction

The reverse engineering of the BTB addressing
b) LS-PHT on bi-mode predictor

Global History Local History

BTB Branch PC
Source | Target] g & &
¢ R
Y
48 0 1 é) C{) _
[VirtualAddress: OXAAAA AAAAAAAA] ALT%E é C? f %) f Multi-GEHL
1] b | Statistical |
2-.|:nls = - . b Corrector
b 4 i O|& O|& O
PID > :
PUF =
Loop n
Predictor
a) The LS-BTB addressing 1

c) LS-PHT on TAGE_SC _L predictor n

Background & Motivation]

Security Analysis

The Proposed LS-BP]

Contents

Evaluation & Summary]

.5' Security Analysis

** mistraining a branch

Shared Branch

PAY:x

>

e Prediction State
Victim branch = -1 Shadow branch |

N

KN

Address
collision

Address
collision

é@ Congruent branch - -1 Congruent branch

Same-address-space Cross-address-space

B Same-address-space mistraining. with the full virtual address
bits for branch addressing, there is no congruent branch with the
victim branch because all branches are located at different virtual
addresses.

B Cross-address-space mistraining. After adding PID, a process’s
history in the Prime phase becomes unrecognizable in the Probe
phase due to context switches

é

.5' Security Analysis

%+ A PoC of branch mistraining

/* Mistraing process */
for (int i = bound; i < bound + 100; i++)
exploit_function (i); // mistrian banch
clfush (&bound);

clfush (&exp_value); // flush cache line The experimental results show
[/* Victim process */ the accuracy of training BTB and
x = tries % bound; // x€[0, bound-1] PHT on a baseline without any
// shared function defense is 97.2% and 98.5%,
vipd exploit_function, (it X} respectively. However, with LS-BP

if (x < bound)

temp &= value: enabled, the attacker can hardly

o] o affect the victim’s branch
temp &= exp_value; prediction (the accuracy is less

______ s than 1%).
/% Prabg progess =/

rdtscp ();

temp &= exp_value; // reload time

rdtscp ();

#

.5' Security Analysis

¢* Why is PUF introduced

® Each PUF has its own unique mapping relationship that differs from the
traditional mapping schemes. Even if an attacker learns the branch
mapping relationship of a machine, he cannot directly use it for other
machines.

® PUF is a one-way physical cryptographic function. Inputting different
challenges to the PUF will generate unique and unpredictable
responses.

® the PUF response is generated in real-time without storing the key,
which makes our scheme higher security against memory-based
attacks.

Challenge(t) >z 8

—————>Response (1)
Challenge (t+& 1), >

Response (t+¢ 1)

Background & Motivation]

The Proposed LS-BP]

Contents

@ Evaluation & Summary

Security Analysis]

.5' Experimental Setup

® The gemb x86 simulator setup

TABLE II

SIMULATED PROCESSOR CORE CONFIGURATION

Parameter Configurations
ISA X86
Frequency 2.5GHz
CPU-type DerivO3CPU
Pipeline Decode-width=8, Fetch-width=8, Issue-width=8
Commit-width=8
ROB/LQ/SQ 352/127/72 entries
Issue Queue 120
BTB 4096 entries
PHT bi-mode: 8192/8192 entries for global/choice predictor
Tournament: 2048/8192/8192 entries for
local/global/choice predictor
TAGE: 32KB
TAGE_SC_L: 66.6KB
TLB 64 entries
L1 ICache 32KB, 4-way, 64B line
L1 DCache 64KB, 4-way, 64B line
L2 Cache 512KB, 16-way, 64B line
L3 Cache 4MB, 32-way, 64B line

® Four different PHT predictors:

including bi-mode, Tournament,

TAGE, and TAGE SC L

® \We randomly selected 12
combinations from the
SPEC2006 benchmark suite

TABLE III
BENCHMARK COMBINATIONS USED IN OUR EVALUATION

Mix Components Mix Components
gec+cal gec, calculix mil+pov milc, povray
bzi+sop bzip2, soplex nam-+les namd, leslie3d

hmm-+lbm hmmer, Ibm gob+h26 gobmk, h264ref
gro+1lbm gromacs, lbm mct+sje mcf, sjeng
sop+hmm soplex.hmmer sje+gcc sjeng, gcc
mcf+per mcf, perlbench cal+nam calculix, namd

.5' Experimental Results

® The performance of LS-BTB ® The performance of LS-PHT

307 Bivode

400{/‘. B T B Tournament

=2 = 4.0% E T:zi_st_r_

£ 3.0% - £

5 5700/0 S

%2‘00/0 4. é

] 00/6 o vusd i e
0.0% -
T 0.0% -
£ 55 &
Fig. 4. The performance overhead of LS-BTB Fig. 7. The performance overhead of LS-PHT
® Combination of LS-PHT and LS-BTB ® Comparison
Hl BiMode

ey A= icrires il USROS - I — . . .
T [| In context switching scenarios,
S, the performance overhead of
o . (] .
s LS-BP (1.71% ~ 2.95%) is
5, generally lower for same PHT
g | predictors in [18] (2.3%

0.0% - 48%)

[18] L. T. Zhao, P. N. Li, R. Hou, et al. “A Lightweight Isolation
Fig. 8. The performance overhead of LS-BP Mechanism for Secure Branch Predictors,” DAC2021.

.5' Summary

® we design a lightweight and secure branch prediction (LS-BP) to
provide secure isolation for branch prediction state of same-
address-space and cross-address-space.

® The proposed LS-BP can effectively mitigate Spectre attacks
based on BTB and PHT

® Experimental results on four branch predictors show that LS-BP
brings less than 3% performance overhead. We believe that such
a secure branch predictor will be integrated into future
processors.

ASIA SOUTH PACIFIC

HC

J£5

b A

U0

HiON

[ONFEF

ENCE

Thank you!

QISIA

chencongcong@hnu.edu.cn

