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Background

A code snippet of Spectre attack

①  Poisoning phase

②  Execution phase

③  Measurement phase

Let x = secret – T, that is, T[x] = *secret

Memory
User Space Kernel Space

secret

T[x]

Probe

Probe[secret]
Cache

A Example of Spectre Attack
Weak states

Strong states



4

Background
How Spectre Attacks Happen:

Impact of Spectre Attacks Today

Affect billions of Intel, 
AMD, and ARM devices

Intel's shares fell 5.2 percent in 
two days, wiping $11.3 billion 
off its market value

$11.3 billion 

b) Side-channel attacksa) Branch mistraining

Shared Memory
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Spectre Attack Types
Spectre attack variants

The root cause of all these attacks

Sharing branch predictors 
among mutually distrusting processes

It’s so hard to defend against Spectre attacks!
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Existing Spectre defenses

Eliminating or reducing the accuracy of covert channels
ü The covert channels can be eliminated by making the execution time 

constant or disturbing the access time to interfere with the attacker’s 
measurements

Limiting transient execution to affect microarchitectural 
states.
ü It makes the changes of microarchitectural state invisible to the attacker.

Limiting the execution of transient instructions.
ü These schemes find the gadget in the target code that may leak secrets by 

static or dynamic analysis. Then lfence instructions are used to serialize 
branches to prevent transient execution from leaking secrets.

Isolation-based secure branch predictors (BPs)
ü These schemes refresh BPs at context switches or use hardware to isolate 

BPs in different process spaces

However, most of these methods only protect the cache 
hierarchy, the attackers can still exploit other covert channels.

However, with the strict enforcement of security policies, 
most of them introduce unacceptable performance overhead

However, they need to capture the code fragments 
in the binary code that can be exploited by the attacker, 

which produces high false negative and false positive rates

However, these strategies either introduce a large context 
switching overhead or have low hardware resource utilization
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Motivation
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Our Works

A lightweight and secure branch predictor (LS-BP) is designed

The proposed LS-BP does not restrict speculative execution to 
minimize performance overhead.

Goal: Achieve low-overhead and high-security defense on Spectre 

Our main contributions:

Detail security analysis against Spectre attacks is given

We show how the LS-BP can break the shared BP among mutually 
distrusting processes, thereby mitigating typical Spectre-PHT and 
Spectre-BTB attacks.

The proposed LS-BP is implemented and evaluated in detail

We simulate four different BPs to evaluate our design on gem5 with 
SPEC2006. Experimental results show that the performance overhead 
of LS-BP is less than 3%.
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Threat Model

Suppose the attacker is co-located with the victim on a same physical core

The attacker can control over a process running on the target system with normal 
user privileges. We refer to this process as the spy process.

Goal: Eliminate Spectre attacks related to the branch 
misprediction, rather than all speculative execution attacks

Suppose the execution of the victim’s program is credible

The attacker cannot modify its program control flow or access memory directly to 
guarantee the confidentiality and integrity of the victim’s information during the 
normal execution.

Suppose the attacker knows the gadget address that could disclose secret

The attacker can manipulate the input to mistrain the branch.
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The Proposed LS-BP
The overall design

l The process identification (PID) is introduced
l The full branch source address bits are used
l PUF is used to generate a unique index 

without increasing the number of index bits
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The Proposed LS-BP
Implementation of LS-BTB Implementation of LS-PHT

The reverse engineering of the BTB addressing

a) The LS-BTB addressing

b) LS-PHT on bi-mode predictor

c) LS-PHT on TAGE_SC_L predictor
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Security Analysis
mistraining a branch

n Same-address-space mistraining. with the full virtual address 
bits for branch addressing, there is no congruent branch with the 
victim branch because all branches are located at different virtual 
addresses. 

n Cross-address-space mistraining. After adding PID, a process’s 
history in the Prime phase becomes unrecognizable in the Probe 
phase due to context switches 
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Security Analysis
A PoC of branch mistraining

The experimental results show 
the accuracy of training BTB and 
PHT on a baseline without any 
defense is 97.2% and 98.5%, 
respectively. However, with LS-BP 
enabled, the attacker can hardly 
a f f e c t  t h e  v i c t i m ’ s  b r a n c h 
prediction (the accuracy is less 
than 1%).
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Security Analysis
Why is PUF introduced

l Each PUF has its own unique mapping relationship that differs from the 
traditional mapping schemes. Even if an attacker learns the branch 
mapping relationship of a machine, he cannot directly use it for other 
machines.

l PUF is a one-way physical cryptographic function. Inputting different 
challenges to the PUF wil l generate unique and unpredictable 
responses.

l the PUF response is generated in real-time without storing the key, 
which makes our scheme higher security against memory-based 
attacks.

Response (t)

Response (t+� t)

Challenge (t)

Challenge (t+� t)
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Experimental Setup

l Four different PHT predictors: 
including bi-mode, Tournament, 
TAGE, and TAGE SC L

l The gem5 x86 simulator setup

l We randomly  se lec ted  12 
c o m b i n a t i o n s  f r o m  t h e 
SPEC2006 benchmark suite
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Experimental Results
l The performance of LS-BTB l The performance of LS-PHT

l Combination of LS-PHT and LS-BTB l  Comparison

In context switching scenarios, 
the performance overhead of 
LS-BP (1.71% ∼  2 .95%) is 
generally lower for same PHT 
pred ic to rs  in  [18 ]  (2 .3% ∼  
4.8%).

[18] L. T. Zhao, P. N. Li, R. Hou, et al. “A Lightweight Isolation 
Mechanism for Secure Branch Predictors,” DAC2021.
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Summary

l we design a lightweight and secure branch prediction (LS-BP) to 
provide secure isolation for branch prediction state of same-
address-space and cross-address-space.

l The proposed LS-BP can effectively mitigate Spectre attacks 
based on BTB and PHT

l Experimental results on four branch predictors show that LS-BP 
brings less than 3% performance overhead. We believe that such 
a secure branch predictor wi l l  be integrated into future 
processors.
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