HEALM: Hardware-Efficient Approximate Logarithmic Multiplier with Reduced Error

Shuyuan Yu, Maliha Tasnim and Sheldon Tan

VSCLAB Department of Electrical and Computer Engineering University of California, Riverside

Outline

MUNICAL -

- Background
- Related Works & Motivation
- HEALM Method
- Results & Discussion
 - Error Evaluation
 - Hardware Performance
 - DCT application
- Conclusion

Background

More emerging workloads and application are error tolerant

- Image process and computer vision (DCT, edge detection, contrast stretch, etc.)
- Machine learning (DNN, CNN, Transformer, Language model, etc.)
- Applications interfacing with human being do not need exact values

Approximate computing, which allows the trade-off between area, delay, and power, is more efficient for error tolerant applications.

Background

Approximate Multipliers

- Ad-hoc based
- Inexact adder based
- Smaller multiplication with reduced precision
- Log-based

Advantages for ALM:

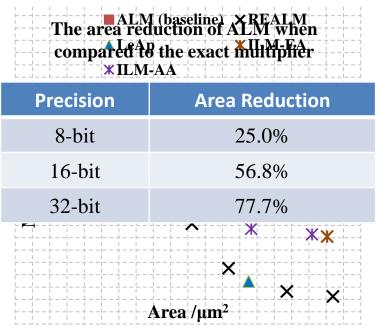
- Scalability (same Rel. error for 8-bit, 16-bit, 32-bit)
- Area/Power/Energy efficient
- Acceptable accuracy: **3.76%** (Mean Rel.) & **11.11%** (Peak Rel.)

Approximate Log-based Muliplier (ALM)

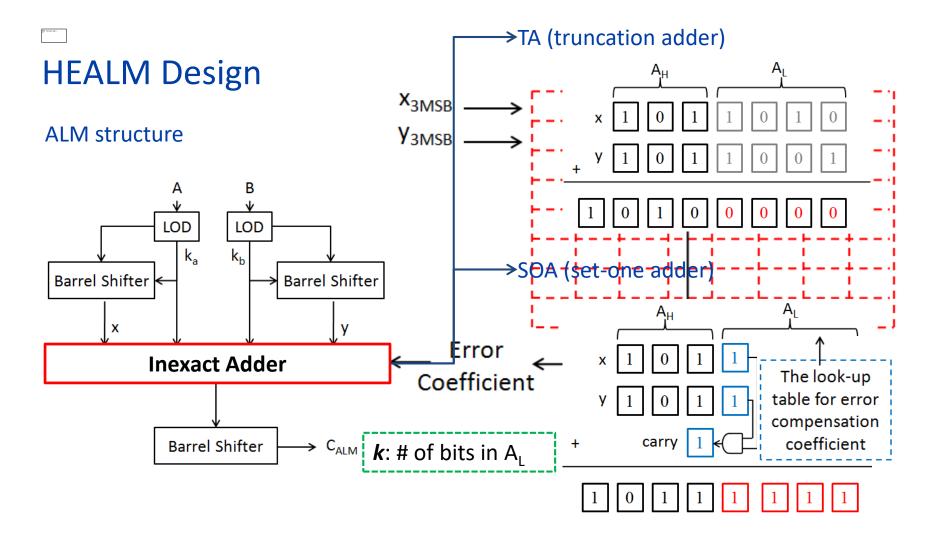
Concept: **a** = 2^{ka}·(1+x) **b** = 2^{kb}·(1+y) $C_{ALM} = \begin{cases} 2^{k_a+k_b} \cdot (1+x) \cdot (1+y) \\ = 2^{k_a+k_b} \cdot (1+x+y), \quad x+y < 1, \\ 2^{k_a+k_b+1} \cdot (x+y), \quad x+y \ge 1 \end{cases}$

Related Work & Motivation

State of art works

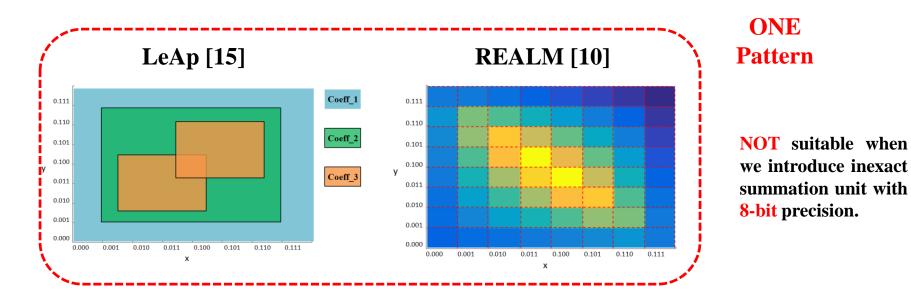

- LeAp [15]
- ILM-EA, ILM-AA [13]
- REALM [10]

Problems


- Improve accuracy with resource overhead
- Save resource with accuracy loss
- Lower precision, less resource saving

Motivation: propose 8-bit logarithmic-based multiplier with resource saving and accuracy improvement at the same time

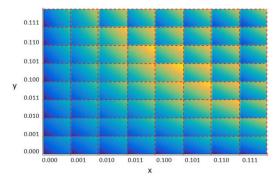
State of art works with 8-bit precision compared with ALM baseline (Area vs. Mean Rel.)



Error Compensation

State of art improved ALMs

L scretzer -



HEALM Method

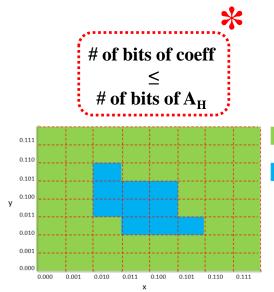
Generate error coefficient table based on different value of *k*

Error profile with inexact adder & error compensation

0.111 0.110 0.101 0.100 0.011 0.010 0.001 0.000 0.000 0.001 0.010 0.011 0.100 0.101 0.110 0.111

0.4

0.35


0.3

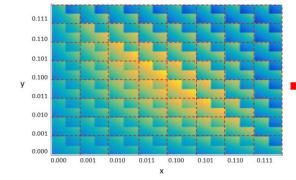
0.25

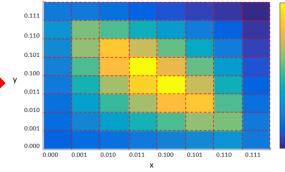
Error profile

Error profile (avg. in block)

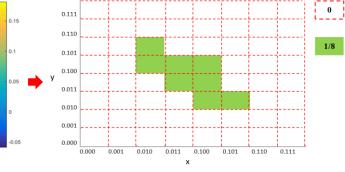
HEALM-TA

Error coefficient


1/8


2/8

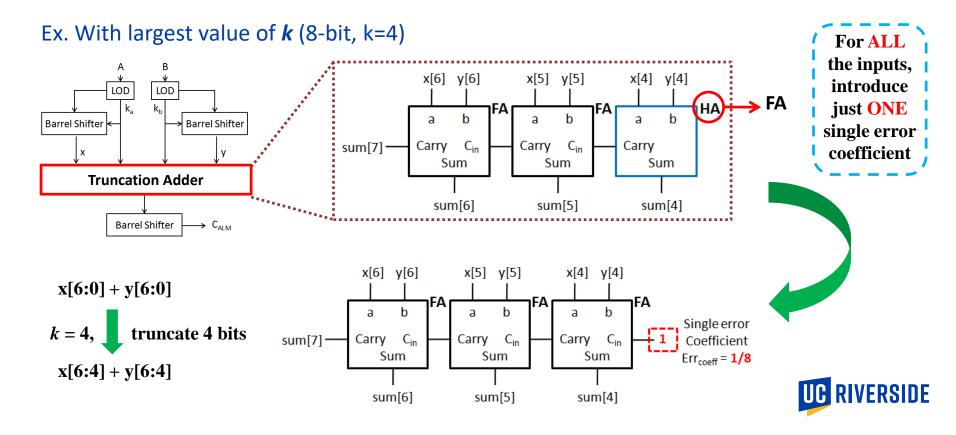
HEALM Method


Generate error coefficient table based on different value of *k*

Error profile with inexact adder & error compensation

Ex. k =4

Error profile


Error profile (avg. in block)

HEALM-SOA

Error coefficient

UC RIVERSIDE

Single Coefficient Mode (HEALM-TA-S)

Results & Discussion

Experimental setup

- Baseline: ALM

- EDK 32nm standard cell library (SNPS DC)

- 400MHz working frequency

1 million random input pairs (Matlab)

Error Metrics & Hardware Performance

Logarithmic MUL	k	Mean /%	Peak /%	Area /µm²	Power /µW
ALM (baseline)	0	3.76	11.11	820.63	72.83
	1	1.12	4.86	1216.84	114.50
TITE AND TA	2	1.40	8.25	938.05	92.17
HELAM-TA	3	2.17	9.75	743.63	74.14
	4	3.66	13.77	595.46	51.41
	1	1.13	4.71	1175.41	113.96
	2	1.38	5.90	966.76	90.32
HEALM-SOA	3	1.78	7.65	808.94	75.05
	4	3.12	12.17	664.33	59.55

Results & Discussion

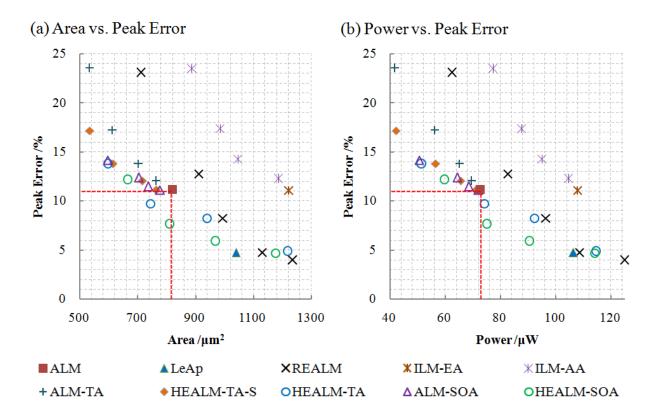
Experimental setup

- Baseline: ALM

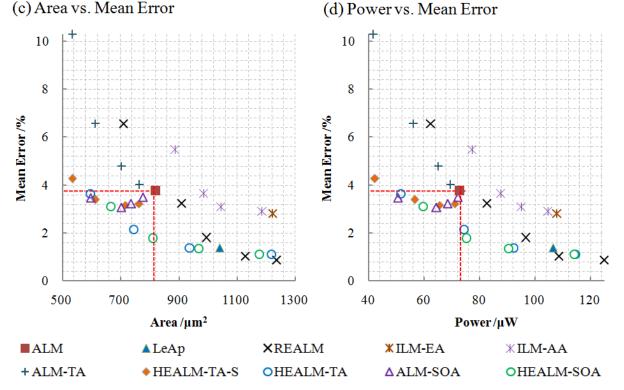
- EDK 32nm standard cell library (SNPS DC)

- 400MHz working frequency

 1 million random input pairs (Matlab)


Error Metrics & Hardware Performance

Logarithmic MUL	k	Mean /%	Peak /%	Area /µm²	Power /µW
ALM (baseline)	0	3.76	11.11	820.63	72.83
ALM-TA	1	4.02	12.03	763.45	69.41
	2	4.79	13.83	702.71	65.07
	3	6.58	17.25	612.74	56.20
	4	10.29	23.53	533.19	41.73
HEALM-TA-S	1	3.21	11.11	763.70	71.19
	2	3.17	12.02	716.69	65.68
	3	3.39	13.79	614.01	56.62
	4	4.26	17.12	534.72	42.32


6.4% Almost NO overheads

Comparison with State of Art Works

Comparison with State of Art Works

(c) Area vs. Mean Error

Complementary Results for **16-bit** Cases

Experimental setup

ACCRETAGE -

Error Metrics & Hardware Performance

- Baseline: ALM	Logarithmic MUL	k	Mean /%	Peak /%	Area /µm ²	Power /µW
	ALM (baseline)	0	3.76	11.11	1825.52	110.91
- EDK 32nm standard cell		0	0.75	3.70	2383.36	164.50
library (SNPS DC)	REALM	9	1.06	5.27	1572.90	94.07
- 200MHz working frequency	LeAp	0	0.98	4.76	1990.71	128.20
	ALM-TA	9	4.88	12.93	1263.86	66.26
	HEALM-TA-S	9	4.87	12.02	1267.16	66.45
- 1 million random input pairs (Matlab)	HEALM-TA	9	1.64	5.83	1511.39	87.62
	ALM-SOA	9	3.07	12.03	1383.56	74.10
	HEALM-SOA	9	1.38	5.15	1577.47	91.89

Application: Discrete Cosine Transform

L wrenet.

Image quality: PSNR (dB)

MUL	Lena	Boat	Barbara	House	Pepper	Avg.		
ALM (baseline)	19.1	18.7	19.3	18.4	18.7	18.8		
<i>k</i> = 4								
ILM-AA	20.2	18.9	20.1	18.5	19.5	19.5		
ALM-TA	14.1	13.7	14.1	13.4	13.7	13.8		
ALM-SOA	18.9	18.9	19.6	16.7	18.9	18.6		
REALM	19.8	20.0	19.8	17.8	19.5	19.4		
HEALM-TA	29.1	28.7	29.1	25.9	28.5	28.3		
HEALM-TA-S	23.1	22.0	22.6	24.3	22.3	22.9		
HEALM-SOA	22.2	22.1	22.6	19.4	22.4	21.7		

Up to **17.2 dB**

At least 2.9 dB

Conclusion

• Propose **HEALM** approach: Hardware-Efficient Approximate Logarithmic Multiplier, with reduced error.

• Do improvements upon the ALM baseline in error metrics and hardware performance aspects at the same time.

• Outperform the state of art design with up to **2.9%**, **9.3%**, **16.1%**, **17.6%** improvement in mean error, peak error, area, power consumption, repectively for 8-bit precision.

• The single coefficient mode **HEALM-TA-S** could improve up to **6.0%** and **6.4%** in mean and peak error respectively when compared to ALM with simple TA, with almost **NO** resource overheads.

• For DCT workloads, with k=1, **HEALM design** could achieve up to **17.2dB** improvement upon ALM baseline; with k=4, **HEALM design** could achieve at least **2.9dB** improvement in image quality.

