DistriHD: A Memory Efficient Distributed Binary Hyperdimensional Computing Architecture for Image Classification

Dehua Liang Osaka University Jun Shiomi Osaka University Noriyuki Miura Osaka University Hiromitsu Awano Kyoto University

Outline

- Background of Hyperdimensional (HD) Computing (page 3)
- Challenges and Contributions (page 4)
- Proposed DistriHD Architecture (page 5 10)
- Experimental Results (page 11 13)
- Conclusion (page 14)

Background of Hyperdimensional Computing

- Demand for a more processing efficient model.
- Hyperdimensional (HD) Computing is a promising alternative method.

3

- ✓ Fast learning process.
- ✓ High robustness.
- ✓ Hardware friendly and light-weight.

Challenges and Contributions

- Challenges in Previous Work:
 - Use non-binarized hypervectors → High computational cost & memory requirement.
 - Retrain the model with iterative learning method \rightarrow Tens of training iterations.
 - Compress the model base on dimension-wise sparsity \rightarrow Feature-wise sparsity.

• Main Contributions in DistriHD:

• High memory efficiency

Support **binary** hypervectors and eliminate the costly CiM & iM.

• Fast Training

Training process can be accomplished in **single-pass** way, while the baseline work ^[1] requires tens of iterations to retrain the model.

• Hardware friendly

27.6x reduction in inference memory cost without hurting the accuracy.9.9x and 28.8x reduction in area and power, respectively.

Proposed Method — Overview of *DistriHD* Architecture

1. Feature Extraction

5

- 2. Proposed Encoding
- 3. Training & Inference
- 4. Optimized Model Sparsification

DistriHD Architecture(1/4) — Feature Extraction

- Max-pooling
- Receptive Field
 - Generate L_r distributed input patterns with non-binary elements.

Thermometer Binarization

• $L_r \rightarrow L_b \times L_r$ distributed input patterns with binary elements.

DistriHD Architecture(2/4) — Proposed Encoding

- Randomly select $M \times B$ elements from the binary input patterns $[f_1, f_2, ..., f_n]$ and construct the metric R
- For each row of R as an integer p_i in binary format, getting M binary vectors with D dimensions.
- Connect these *M* vectors to a single binary hypervector

$$H = [h_{11}, \, ..., \, h_{1D}, \, h_{21}, \, ..., \, h_{MD}]$$

DistriHD Architecture(2/4) — Proposed Encoding

✓ Eliminate the costly CiM and iM blocks.

• In traditional encoding of HD computing, according to the feature index and value, read the index hypervector and base hypervector from the pre-stored CiM and iM block.

8

• Example of Inference Memory Occupations in work ^[1].

	MNIST	ISOLET	UCIHAR	FACE	Expensive!
CiM	94.92%	91.41%	92.73%	94.70%	
iM	3.87%	4.74%	5.29%	4.98%	
AM	1.21%	3.85%	1.98%	0.31%	

DistriHD Architecture(3/4) — Training & Inference

 $\sum \delta(H^l, C^l)$

- Single-pass Training: The distributed hypervectors from the same class are accumulated in the distributed class hypervectors.
- Inference: Check the similarity of the L distributed hypervectors.

Mathematically, the similarity metric in the $\frac{1}{2}$ Similarity metric in the *DistriHD* is as follow: traditional HD^[1] is Hamming distance δ :

$$\sum_{l=0}^{L} \operatorname{sgn}[\delta(H^{l} \& C^{l}, C^{l}) - M]$$

DistriHD Architecture(4/4) — Optimized Model Sparsification

Traditional HD

Dimension-wise Sparsification^[1]

• DistriHD

Additional Feature-wise Sparsification

[1] M. Imani et al., "SparseHD: Algorithm-Hardware Co-Optimization for Efficient High-Dimensional Computing," in FCCM, 2019.

Experimental Results(1/3) — Impact of Parameters in *DistriHD*

Experimental Results(2/3) — Memory Cost Reduction

• The memory cost reduction mainly comes from the elimination of CiM and iM.

1. including iM:

(Baseline^[1] Memory Cost = CiM+iM+AM)

Achieve **27.6x** reduction in inference memory cost without hurting the accuracy.

2. without iM:

(Baseline Memory Cost = AM) Achieve a similar accuracy.

Experimental Results(3/3) — Training Iteration & Hardware Cost

- Efficient Single-Pass Training:
- (DistriHD vs 50*Baseline^[1])

13

- Hardware Comparison:
 - 9.9x and 28.8x reduction in area and power, respectively.

Conclusion

- Utilize **binary** hypervectors in both training and inference phase.
- Successfully eliminate the costly CiM and iM in the encoding procedure, resulting in 27.6x inference memory reduction without hurting the accuracy.
- Training process can be accomplished in **single-pass** way.
- 9.9x and 28.8x reduction in area and power, respectively.