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Background of Hyperdimensional Computing

* Demand for a more processing efficient model.

* Hyperdimensional (HD) Computing is a promising alternative method.

v'Fast learning process.
v'High robustness.
v'Hardware friendly and light-weight.
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Challenges and Contributions

* Challenges in Previous Work:
* Use non-binarized hypervectors - High computational cost & memory requirement.
* Retrain the model with iterative learning method = Tens of training iterations.
* Compress the model base on dimension-wise sparsity - Feature-wise sparsity.

* Main Contributions in DistriHD:

* High memory efficiency
Support binary hypervectors and eliminate the costly CiM & iM.

* Fast Training
Training process can be accomplished in single-pass way, while the
baseline work 1l requires tens of iterations to retrain the model.

 Hardware friendly
27.6x reduction in inference memory cost without hurting the accuracy.
9.9x and 28.8x reduction in area and power, respectively.

[1] M. Imani et al., “A Binary Learning Framework for Hyperdimensional Computing,” in DATE, 2019.



Proposed Method — -
Overview of DistriHD Architecture
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DistriHD Architecture(1/4) —
Feature Extraction

* Max-pooling

* Receptive Field

* Generate L, distributed input patterns
with non-binary elements. 4

. |

* Thermometer Binarization

* L. > L, xL, distributed input patterns
with binary elements.
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DistriHD Architecture(2/4) —

Proposed Encoding
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* Randomly select M x B elements from

the binary input patterns [f,, f,, ..., f,]
and construct the metric R

* For each row of R as an integer p; in
binary format, getting M binary vectors
with D dimensions.

* Connect these M vectors to a single
binary hypervector

H=1[h;1, o hip, Doy s Bpyp]



DistriHD Architecture(2/4) —
Proposed Encoding

v'Eliminate the costly CiM and iM blocks.

* In traditional encoding of HD computing, according to the feature
index and value, read the index hypervector and base hypervector
from the pre-stored CilVI and iVI block.

* Example of Inference Memory Occupations in work 1,

MNIST ISOLET UCIHAR FACE
Cim 94.92% 91.41% 92.73% 94.70% =
iMm [ 3.87% 4.74% 5.29% 4.98% J/
AM 1.21% 3.85% 1.98% 0.31%

[1] M. Imani et al., “A Binary Learning Framework for Hyperdimensional Computing,” in DATE, 2019.

Expensive!



DistriHD Architecture(3/4) —
Training & Inference

* Single-pass Training: The distributed hypervectors from the same
class are accumulated in the distributed class hypervectors.

* Inference: Check the similarity of the L distributed hypervectors.

Mathematically, the similarity metric in the
traditional HD 1 is Hamming distance 6 :

L
Z S(H, C1)
[=0

Similarity metric in the DistriHD is as follow:

L

z sgn[ §(H'&C!, C) — M]

[=0

[1] M. Imani et al., “A Binary Learning Framework for Hyperdimensional Computing,” in DATE, 2019.



DistriHD Architecture(4/4) —
Optimized Model Sparsification
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Experimental Results(1/3) — 11
Impact of Parameters in DistriHD

Parameter
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Experimental Results(2/3) —
Memory Cost Reduction

* The memory cost reduction mainly comes o5 | SN
from the elimination of CiM and iM. g—:—_g:ﬁ’z? A—a
- 90 ¢t
C
. . . 5— 85
1. including iM: :
(Baseline!l Memory Cost = CiM+iM+AM) g 8
Achieve 27.6x reduction in inference memory cost 75 ¢
without hurting the accuracy.
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(Baseline Memory Cost = AM)
Achieve a similar accuracy.

[1] M. Imani et al., “A Binary Learning Framework for Hyperdimensional Computing,” in DATE, 2019.



Experimental Results(3/3) —
Training Iteration & Hardware Cost

* Efficient Single-Pass Training:
* (DistriHD vs 50*Baseline!ll)
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* Hardware Comparison:
* 9.9x and 28.8x reduction in area and power, respectively.

[1] M. Imani et al., “A Binary Learning Framework for Hyperdimensional Computing,” in DATE, 2019.



Conclusion

 Utilize binary hypervectors in both training and inference phase.

* Successfully eliminate the costly CiM and iM in the encoding
procedure, resulting in 27.6x inference memory reduction without
hurting the accuracy.

* Training process can be accomplished in single-pass way.

* 9.9x and 28.8x reduction in area and power, respectively.
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