Design-for-Reliability and Probability-Based Fault Tolerance for Paper-Based Digital Microfluidic Biochips with Multiple Faults

Jian-De Li¹, Sying-Jyan Wang¹, Katherine Shu-Min Li², and Tsung-Yi Ho³

¹Department of Computer Science and Engineering, National Chung Hsing University ²Department of Computer Science and Engineering, National Sun Yat-Sen University ³Department of Computer Science, National Tsing Hua University

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Paper-Based Digital Microfluidic Biochips

- Biochip
 - Miniaturized lab that perform a bioassay
 - Digital Microfluidic Biochip
 - Control bioassay process by Electrowetting

• PB-DMFBs

- Lab-on-paper
- An ASSURED diagnostics solution
 - Affordable
 - Sensitive
 - Specific
 - User-friendly
 - Rapid
 - Equipment-free
 - Deliverable to end-users

The manufacturing process of PB-DMFBs [1]

[1] H. Ko, et al., "Active digital microfluidic paper chips with inkjet-printed patterned electrodes," Advanced Materials, Vol. 26, No. 15, pp. 2335-2340, 2014.

Reliability on PB-DMFBs

- Paper-based microfluidic devices are designed for diagnostics of pandemic, including Ebola, Malaria, and COVID-19
- PB-DMFBs may be affected by physical defects
 - This leads to an incorrect functionality of droplet manipulations
 - 1. Waste of reagents and samples
 - Bought with high prices or collected with effort
 - 2. Inefficient usage of human resource
 - The professionals have to check the meaning of the incorrect outcomes
 - Then perform the repetition of the diagnostics
 - 3. Risk of exposure and infection
 - Re-collecting samples for the new diagnostic
 - A false negative of diagnostics may happen
- To ensure the one-pass diagnostic with the correct functionality, reliability issues have to be considered

Limitations for Appling DMFBs Reliability Methods

- No fully programmable electrode array
 - Most DMFBs are manufactured for general applications, while PB-DMFBs are designed for a specific purpose
- Electrical field interference
 - A single-layer paper substrate for both droplet routing and conductive wire routing
- Low dependence on cyber-physical systems to meet ASSURED
- Only the single fault assumption is considered
 - It is possible to have multiple faults in a PB-DMFB due to entangled electrodes, and conductive wire routing

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Contributions & Motivations

- A diagnosis and fault tolerance scheme for PB-DMFBs assuming multiple faults
 - Two stages for Design-for-Reliability
 - DfR design flow for PB-DMFB designs
 - On-the-fly probability-based diagnosis and fault tolerance procedure
 - The least dependence on sensors for diagnosis and fault tolerance automation

[2] J.-D. Li, et al., "Test and diagnosis of paper-based microfluidic biochips," in Proc. IEEE VLSI Test Symposium (VTS), pp. 1-6, 2016.

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

The Fault Models and Assumptions

- Electrode open fault (EOP):
 - One or more electrode open faults may occur due to the defect(s) in the PB-DMFB design
- Wire open fault (WOP):
 - One or more conductive wire open faults may occur due to the open wire routing
 - All the downstream electrodes are affected by a wire open fault
- Assumptions for cyber-physical systems
 - Sensors or smart phones to obtain the experimental data and monitor the bioassays executions
 - PB-DMFBs could be applied in resources-limited regions
 - Sensors may have limited capacity or be used for multiple diagnostics simultaneously

Critical Fault Sets (CFSs)

- Only faults on critical locations can disable the functionality of biochips
- The cut-set theorem can be leveraged for finding CFSs under multiple fault assumptions

- *S* is the node group with the source node representing the source electrode
- *T* is the node group with the terminal node representing the terminal electrode
- *M* is the middle node group isolated by the two cuts

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Design-for-Reliability Design Flow

- A droplet region consists of
 - a source electrode, a terminal electrode, and electrodes may be involved
- User-defined terminal conditions:
 - Fabrication cost (e.g., #used electrodes, wirelength)
 - #Considered Tolerated faulty electrodes (TFE)

Alternative Path Construction

- The unselected electrodes can be candidate electrodes (*CE*) for alternative paths
- To have at least one valid droplet routing bypassing the faulty electrodes

Algorithm 1 - Connecting S and T

type first

• Then the order

Node with the most #adjacent

For new TFS, S>T>FE

• If no S is connected, APE>S>T

• If no T is connected, APE>T>S

Connecting S and T by adding node with the most #adjacent then APE>S>T

S/T: electrodes represented by *S/T* group *FE*: faulty electrode targeted in this round *CE*: candidate electrodes *APE*: alternative path electrodes added in this round

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Compute the Faulty Probability

- Assume that all the electrode open faults have identical expected occurrence probability, denoted as P(EOP)
- The expected occurrence probability of a wire open fault, P(WOP), are increasing with wirelength

 $P(WOP) = w \times P(WOP_{11})$

- w is wirelength of the wire
- *P*(*WOP*_{..}) is the expected probability of having a wire open fault on a wire with one unit of wirelength

Occurrence probabilities

Diagnosis & Fault Tolerance Procedure

Descriptions and Countermeasures of the Conditions

D1	D2	D3	D4	Descriptions of the conditions	Countermeasures				
Y	-	-	-	• The droplet is transported to the terminal.	• Perform the next operation in the bioassay.				
N	Y	-	Y	 The droplet is on the location of source. The adjacent-to-source electrode of the selected path is faulty. 	 Delete the paths with the faulty adjacent- to-source electrode. Select the path with the lowest probability to continue the procedure. 				
N	N	Y	Y	 At least one electrode on the selected path is faulty. The source electrode is not faulty. The adjacent-to-source electrode on the selected path is not faulty. 	 Delete the selected path. Select the path with the lowest probability to continue the procedure. 				
N	N	N	Y	 The source electrode is faulty. The adjacent-to-source electrode on the selected path is not faulty. Except the above two electrodes, at least one electrode on the selected path is faulty. 	 Delete the selected path. Set the adjacent-to-source electrode on the selected path as source. Select the path with the lowest probability to continue the procedure. 				
N	Y	-	Ν	• At least one electrode on the selected path	• Stop the bioassay and inform the user				
N	N	X	N	is faulty.No alternative path can be used.	this biochip is with failure.				

Y/N: The decision returns Yes/No. -: The procedure does not reach this decision . X: don't care.

On-the-fly probability based diagnosis and fault tolerance procedure **Import the** DfR droplets Compute the faulty probabilities Select the path with the lowest probability Perform the activation sequences D1: Sensing droplet **Function/Fault tolerance** Yes on the terminal? achieved No D2: Sensing droplet Delete the paths with the faulty Yes adjacent-to-source electrode on the source? No **Recall the droplet to the source** D3: Sensing droplet on the source? Set the adjacent-to-source electrode on the selected path as source Delete the selected path Any available Yes D4: path? No The faults are intolerable

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Experimental Results

- 7 designs with 10,000 instances to obtain the average #transportations
- *P*(*EOP*)=0.01 and *P*(*WOP*_u)=0.001, normal distribution

D	Original design				Design-for-reliability						Diagnosis and fault tolerance			
Benchmarks	Size	#E	#CP	WL	#DR	<i>T.C.</i>	#E	#CP	WL	#FE = 1	# <i>FE</i> = 2	# <i>FE</i> = 3	Proposed	Random
amino-acid-1	6x8	20	12	208	6	# <i>TFE</i> =1	32	18	324	100%	97.85%	92.74%	3.3726	3.589
						<i>#TFE</i> =2	36	22	358	100%	99.37%	97.59%	2.098	4.4795
amino agid 2	6x8	24	16	224	6	# <i>TFE</i> =1	36	22	332	100%	99.05%	96.81%	3.5269	4.0032
ammo-acid-2						<i>#TFE</i> =2	40	26	380	100%	99.49%	98.24%	3.4051	4.2413
protoin 1	13x13	34	18	320	8	# <i>TFE</i> =1	60	34	744	100%	96.04%	88.14%	5.258	5.6362
protein-1						<i>#TFE</i> =2	76	42	764	100%	98.95%	96.78%	5.4269	5.4961
protein-2	13x13	51	30	688	15	C.L.S.	75	38	949	86.67%	66.31%	45.34%	5.1594	5.2999

- For most cases, the proposed method achieves
 - 100% for single fault tolerance
 - 96.04-99.49% for fault sets with two
 - 88.14-98.24% for three
- The proposed procedure can consume less time to achieve diagnosis and fault tolerance

- #E = #used electrodes
- #CP = #used control ports
- *WL* = wirelength
- *#DR* = #partitioned droplet regions
- *T.C.* = terminal conditions of DfR design flow
- *#TFE* = #considered tolerable faulty electrodes
- C.L.S. = the design flow returned the last available result due to the capacity of Chip-Level Synthesis tools
- #FE = 1: fault coverage for #faulty electrode = 1
- The last two column = averaged transportations used among partitioned regions

- Background
- Contributions & Motivations
- Fault Models and Assumptions
- Design-for-Reliability Design Flow
- On-the-fly Probability-Based Diagnosis and Fault Tolerance Procedure
- Experimental Results
- Conclusion

Conclusion

- A diagnosis and fault tolerance scheme for PB-DMFBs assuming multiple faults
 - Two stages for Design-for-Reliability
 - DfR design flow for PB-DMFB designs
 - Experimental Results show that for the most cases, the DfR provides fault tolerance
 - On-the-fly probability-based diagnosis and fault tolerance procedure
 - Consume less time to achieve diagnosis and fault tolerance
 - The least dependence on sensors for diagnosis and fault tolerance automation
 - The procedure only monitoring the locations of source and terminal electrodes (D1-D3)

Thank you very much!