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Introduction

• Manual analog circuit design is the mainstream in industry

• The key problem in analog circuit synthesis: circuit sizing

• We concentrate on analog circuit sizing, multi-objective optimization.

Analog circuit 

synthesis

Topology selection

Circuit sizing

Layout generation
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Introduction

• Most of the work concentrates on the synthesis of analog circuits at block-level. 

However, few results are reported on the optimization of an analog system.

• The optimization of an analog system

• Low efficiency of multi-objective optimization is the bottleneck to optimize the 

system.
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Top-down method[1] Bottom-up method[2]
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[2] Fábio Passos, Elisenda Roca, Javier Sieiro, Rafaella Fiorelli, Rafael Castro-López, José Mar ıa López-Villegas, and Francisco V Fernández. A multilevel bottom-up optimization methodology for 

the automated synthesis of RF systems.IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, 39(3):560–571, 2019.



Introduction

• Multi-objective analog circuit sizing

• 1.model-based methods，2.simulation-based methods

• Fast, but inaccuracy.

Posynomial
models

Optimizer

Objectives,
constraints

Pareto 
front

Design paremeters

Performances
Optimized design 
parameters

Modeling

Sampling
Circuit simulator
Spectre/Hspice
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Introduction

• Multi-objective analog circuit sizing

• 1.model-based methods，2.simulation-based methods

• High accuracy. Require a large number of time-consuming simulations.

Optimizer

Objectives,
constraints

Pareto 
front
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Introduction

• Multi-objective analog circuit sizing

• Online model-based methods

• High accuracy with less number of simulations

Optimizer

Objectives,
constraints

Pareto 
front

Design paremeters

Performances
Optimized design 
parameters

Circuit simulator
Spectre/Hspice
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Motivation

• Multi-objective Bayesian optimization (MOBO)[3] is one of the most 

representative algorithms in online model-based methods

• Sacrifice the time spent on the model for simulation time. 11

Acquisition function: 
[LCB1,LCB2,…,LCBm]

Internal optimization by 
modified NSGA-II to 

obtain the sample point x

Build models for objectives 
by Gaussian process(Kriging)

Simulate and add to the 
database

Pareto front

Initialization

[3] Wenlong Lyu, Fan Yang, Changhao Yan, Dian Zhou, and Xuan Zeng 

Multi-objective Bayesian optimization for analog/RF circuit synthesis. 

InProceedings of the 55th Annual Design Automation Conference, pages

1–6, 2018.



Motivation

• There are two problems remains to be solved in online model-based methods.

• 1. The time spent on the model is comparable to or even exceed the simulation 

time in online model-based methods.

• 2. Most online model-based methods can not deal with constrained problems.

• The motivation of this work is to develop an online model-based method which 

shortens the time spent on the model.
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Total optimization time

Time spent on the model

Simulation time

Total optimization time

Time spent on the model

Simulation time
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Proposed SILE algorithm

• Time complexity of Kriging model

• Training process: the goal is to find the fittest hyperparameters ෠𝜃 for observed 

points. The time complexity is 𝑶(𝑻𝟏 ⋅ 𝒏
𝟑). T1 is the number of evaluating (1)

• Prediction process: Given  estimated ෠𝜃 and calculated 𝑅−1 , one can predict the 

performances at any untested point. The time complexity is 𝑶(𝑻𝟐 ⋅ 𝒏
𝟐).
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෠𝜃 = argmax −
𝑛

2
𝑙𝑛 ො𝜎2 − ln 𝑹

Ƹ𝜇 =
𝟏𝑇𝑹−1𝑦

𝟏𝑇𝑹−1𝟏

ො𝜎 =
𝒚 − 𝟏 Ƹ𝜇 𝑹−1(𝒚 − 𝟏 Ƹ𝜇)

𝑛
𝑅 𝑥, 𝑥′ = exp −Σ𝑖=1

𝑑 𝜃𝑖 𝑥𝑖 − 𝑥𝑖
′ 2

൞

ො𝑦(𝒙) = Ƹ𝜇 + 𝒓𝑇𝑹−1 𝒚 − 𝟏 Ƹ𝜇

Ƹ𝑠2 𝒙 = ො𝜎2[1 − 𝒓𝑇𝑹−1𝒓 +
1 − 𝟏𝑇𝑹−1𝒓 2

𝟏𝑇𝑹−1𝟏
]

(1)

(2)



Proposed SILE algorithm

• We propose an efficient Kriging-based constrained multi-objective evolutionary 

algorithm for analog circuit synthesis via self-adaptive incremental learning (SILE).

Total optimization 

time

Simulation time

Training time of the 

model

Prediction time of the 

model

The prescreening strategy 

𝑂(𝑇1 ⋅ 𝑛
3) 𝑂(1 ⋅ 𝑛3) 𝑂(𝑛2)

Self-adaptive 
strategy

The Incremental 
learning technique

𝑂(𝑇2 ⋅ 𝑛
2) 𝑂(1 ⋅ 𝑛2)

No internal 
optimization
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Proposed SILE algorithm

• Incremental learning technique

• How to calculate new ෨𝑅−1 from 𝑅−1 of the old model?

• C is a 1×1 matrix. The time complexity of computing 𝐶−1 is 𝑂(1).

• Now that 𝑅−1 is known, the time complexity of ෨𝑅−1 is 𝑂(𝑛3) →𝑶(𝒏𝟐)

෨𝑅−1 = 𝑅−1 + 𝑅−1𝐴𝐶−1𝐴𝑇𝑅−1 −𝑅−1𝐴𝐶−1

−𝐶−1𝐴𝑇𝑅−1 𝐶−1

𝐶 = 𝐵 − 𝐴𝑇𝑅−1𝐴

෨𝑅 =

𝑅11 𝑅12 ⋯ 𝑅1𝑛 𝑅1(𝑛+1)
𝑅21 𝑅22 ⋯ 𝑅2𝑛 𝑅2(𝑛+1)
⋮ ⋮ ⋱ ⋮ ⋮

𝑅𝑛1 𝑅𝑛2 ⋯ 𝑅𝑛𝑛 𝑅𝑛(𝑛+1)
𝑅 𝑛+1 1 𝑅 𝑛+1 2 ⋯ 𝑅(𝑛+1)𝑛 𝑅(𝑛+1)(𝑛+1)

=
𝑅 𝐴
𝐴𝑇 𝐵
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• ෨𝑅 is a symmetry positive definite matrix ↔ ෨𝑅 = ෨𝐿෨𝐿𝑇

• How to calculate new ෨𝐿 from 𝐿 of the old model?

• the time complexity of 𝐿−1𝐴 is 𝑂(𝑛2) by using back substitution method

• The time complexity of 𝐶ℎ𝑜𝑙 𝐵 − 𝐴𝑇𝐿−𝑇𝐿−1𝐴 is 𝑂(1). 

• Now that 𝐿 is known, the time complexity of ෨𝐿−1 is 𝑂(𝑛3) →𝑶(𝒏𝟐) 17

෨𝑅 = ෨𝐿෨𝐿𝑇 ෨𝐿 =
𝐿11 0
𝐿21 𝐿22

෨𝑅 =
𝐿11 0
𝐿21 𝐿22

𝐿11
𝑇 𝐿21

𝑇

0 𝐿22
𝑇

=
𝐿11𝐿11

𝑇 𝐿11𝐿21
𝑇

𝐿21𝐿11
𝑇 𝐿21𝐿21

𝑇 + 𝐿22𝐿22
𝑇

൞

𝐿11𝐿11
𝑇 = 𝑅

𝐿11𝐿21 = 𝐴

𝐿21𝐿21
𝑇 + 𝐿22𝐿22

𝑇 = 𝐵

෨𝐿 =
𝐿 0

𝐴𝑇𝐿−𝑇 𝐶ℎ𝑜𝑙(𝐵 − 𝐴𝑇𝐿−𝑇𝐿−1𝐴)

෨𝑅 =
𝑅 𝐴
𝐴𝑇 𝐵

Proposed SILE algorithm



Proposed SILE algorithm

• Self-adaptive strategy

• 1. In most cases, we build models with incremental Kriging model 

without updating hyperparameters. We only learn hyperparameters with 

Kriging model under a specific number of simulations.

• 2. In the early stage of optimization, we need to update 

hyperparameters more frequently.

• 3. In the later stage of optimization, we lower the frequency to update 

hyperparameters.
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Proposed SILE algorithm

• Self-adaptive strategy

• As a result, hyperparameters are updated every H generations. H is 

adaptively adjusted based on the number of simulations, N

• 𝜆: the initial sample number 𝑁max:the maximum number of simulations

• 𝐻max: upper bound for H 𝐻min: lower bound for H

• For 𝜆 = 100, 𝑁max = 200, 𝐻min = 10,𝐻max = 19, hyperparameters only 

update when 𝑁 = 100, 110, 121, 133, 146, 160, 175, 192.

𝐻 =
𝑁 − 𝜆

𝑁max − 𝜆
𝐻max − 𝐻min + 𝐻min
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Proposed SILE algorithm

• Self-adaptive strategy

• The area under a curve is the total training time in the process of optimization

• At small spikes, we use Kriging model to optimize hyperparameters

• In the rest number of simulations, incremental Kriging model is used

Self-adaptive strategy
Incremental learning
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The framework of prescreening

21

Reduce the prediction 
time of the model

Incremental 

Kriging model

Self-adaptive 

strategy
NO

Select the l best design. 

Generate l offspring

Prescreen the most 

promising one in 

offspring

Simulate and add it 

to the database

NSGA-II 

criterion

Acquisition function 

(LCB)

Locate the most 

promising one in the 

model

Internal optimization 

by modified NSGA-II

Simulate and add it 

to the database

Kriging model

YES

Kriging model

MOBO algorithm

Initialization Initialization

Stoping criterion Stoping criterion
Ouput Pareto front 

in the feasible region
YES YES

SILE algorithm

NO

NO

Kriging model

Reduce the training 
time of the model

Proposed SILE algorithm



Proposed SILE algorithm

• More details

• x is said to constraint-dominate y if the following condition holds:

• 1) if 𝐶𝑉 𝑥 = 0 and 𝐶𝑉 𝑦 = 0, ∀𝑖 ∈ 1, 2, … ,𝑚 such that 𝑓𝑖 𝑥 ≤ 𝑓𝑖(𝑦) and 

∃𝑗 ∈ {1, 2, … ,𝑚} such that  𝑓𝑖 𝑥 < 𝑓𝑖(𝑦)

• 2) otherwise, 𝐶𝑉 𝑥 < 𝐶𝑉(𝑦)

𝐶𝑉 𝑥 =෍

𝑖=1

𝑝

max(𝑔𝑖(𝑥), 0)

minimize )𝑓1(𝒙), 𝑓2(𝒙), … , 𝑓𝑚(𝒙

s.t. 𝑔𝑖 𝒙 < 0 ∀𝑖 ∈ 1,2, … , 𝑝
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Experimental results

• A two-stage amplifier, 11 design variables, 180nm

• 15 corners: −40∘𝐶, 27∘𝐶, 85∘𝐶 and tt, ss, ff, fs, sf

VDD

Vin+Vin- Vout

Ibias

𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 −𝐺𝑎𝑖𝑛, −𝑈𝐺𝐵𝑊,−𝑃𝑀
𝑠. 𝑡. 𝑃𝑀 > 60∘
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Experimental results

• A two-stage amplifier, 11 design variables, 180nm

• Compared with MOBO, SILE reduce the training time by 95% and the 

prediction time by 99.7%. SILE shows a speedup of 10X in terms of the 

total time while achieving better results.

Algorithm SILE MOBO NSGA-II MOEA/D

Max Gain(dB) 81.58 81.33 80.31 81.17

Max UGBW(MHz) 19.64 18.86 16.95 17.68

Max PM(°) 93.10 92.71 92.84 85.99

Mean HV 14821 13951 13880 13709

Median HV 14726 14038 14231 13582

Max HV 16268 14624 15209 16190

Min HV 13484 12526 10597 12224

𝑁max 400 400 4000 4000

Training time/s 56.54 1183.76 N/A N/A

Prediction time/s 2.53 798.26 N/A N/A

Simulation time/s 1423.37 1492.73 15051.81 15170.12

Total time/s 1490.35 3476.15 15052.09 15172.64

95%

99.7%

10X
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Experimental results

• A fully differential operational amplifier , 21 design variables, 65nm
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Experimental results

• A fully differential operational amplifier , 21 design variables, 65nm

• SILE reduces the training time by 95%, the prediction time by 99.8% 

while achieving much better PF. There is a 6X speedup over NSGA-II 

and MOEA/D regarding the total time.

Algorithm SILE MOBO NSGA-II MOEA/D

Max Gain(dB) 70.89 70.37 69.92 68.10

Max GBW(MHz) 770 639 685 738

Mean HV 10684 7678 9709 9368

Median HV 10892 7715 9565 9344

Max HV 11676 9235 10664 10160

Min HV 9239 5799 9102 8724

𝑁max 400 400 4000 4000

Training time/s 382.44 8084.91 N/A N/A

Prediction time/s 6.29 3014.34 N/A N/A

Simulation time/s 804.43 837.67 7420.74 7234.19

Total time/s 1200.90 11941.38 7420.97 7235.87

95%

99.8%

6X
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Conclusion

• We propose an efficient Kriging-based constrained multi-objective evolutionary 

algorithm for analog circuit synthesis via self-adaptive incremental learning.

• Experimental results on two real-world circuits demonstrate that compared with 

MOBO, our method can reduce the training time of Kriging model by 95% and 

the prediction time by 99.7% . Compared with NSGA-II and MOEA/D, the 

proposed method can achieve up to 10X speed up.

Total optimization 

time

Simulation time

Training time of the 

model

Prediction time of the 

model

The prescreening strategy 

𝑂(𝑇1 ⋅ 𝑛
3) 𝑂(1 ⋅ 𝑛3) 𝑂(𝑛2)

Self-adaptive 
strategy

The Incremental 
learning technique

𝑂(𝑇2 ⋅ 𝑛
2) 𝑂(1 ⋅ 𝑛2)

No internal 
optimization
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Thanks for your attention!

30


