

27th Asia and South Pacific Design Automation Conference ASP-DAC 2022

Fast Variation-aware Circuit Sizing Approach for Analog Design with ML-Assisted Evolutionary Algorithm

Authors: <u>Ling-Yen Song</u>, Tung-Chieh Kuo, Ming-Hung Wang, Chien-Nan Jimmy Liu, Juinn-Dar Huang

> Mixed-Signal Electronic Design Automation Lab Institute of Electronics, National Yang Ming Chiao Tung University

Outline

□ Introduction

Proposed Circuit Sizing Methodology

- **D** Experimental Results
- **Conclusion**

Analog Circuit Sizing Challenges

□ Manually sizing analog circuit is a complicated task

- Non-linear characteristics
- Sensitive to process variation
- Suffer from expensive simulation
- □ Two steps in analog circuit sizing
 - Optimize the nominal performance
 - Optimize the parametric yield under process variation
- Automatic circuit sizing is necessary

Traditional Simulation-based Sizing

□ Simulation-based sizing

- Simulated annealing (SA)
- Evolutionary algorithm (EA)

□ Accurate but slow

- Require many iterations to converge
- Each iteration requires expensive simulations

□ ML-assisted analog sizing

- BagNet_[1]
- AutoCkt_[2]
- ESSAB_[3]
- Previous works tried to replace simulator

4

□ Most of them do not consider process variation

[3] A. Budak, et., "An Efficient Analog Circuit Sizing Method Based on Machine Learning-Assisted Global Optimization," in IEEE TCAD, Early Access.

K. Hakhamaneshi, et., "BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural Networks," ICCAD, pp. 1-8, 2019.
 K. Settaluri, et., "AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs," DATE, pp. 490-495, 2020.

Synthesis with Variations

- □ In advanced technology, device variations become the major factor limiting circuit performance
 - Variations are often not considered in traditional sizing algorithms
- Effects of process variations may change
 - Transistor width (W)
 - Channel length (L)
 - Oxide thickness (t_{ox})
 - ... →Circuit performance

□ The feasible nominal circuit may have a serious yield loss

Mxed-Signal Electronic Design Automation Lab.

[4] Y. Chen, W. Wu, C. J. Liu, and J. C. Li, "Simultaneous Optimization of Analog Circuits With Reliability and Variability for Applications on Flexible Electronics," in IEEE TCAD, vol. 33, no. 1, pp. 24-35, Jan. 2014.

ORDE

[5] B. Liu et., "Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques," in IEEE TCAD, vol. 30, no. 6, pp. 793-805, June 2011.

Contributions

\Box In this work

- Machine learning-assisted evolutionary algorithm
 - Pruning the required simulation amount
 - Enhancing the convergence speed of the search engine
- Fast yield evaluation without using Monte Carlo analysis
 - Force model
 - Reduce the computational cost of yield evaluation
- Aid designer to optimize design with robustness

Outline

□ Introduction

Proposed Circuit Sizing Methodology

- **Experiment Results**
- Conclusion

ML-assisted Analog Sizing

□ ML model helps to screen out useless simulations

Predictor chooses design samples that are very likely to have better performance

Prediction Model

Predicting the exact performance is difficult and unnecessary

• Predicting a sample is "better" or "worse" is easier_[4]

Design A

Design B

□ Prediction model

- Input
 - Two circuit designs
- Output
 - The probability of that

design A is better than design B on $metric_i$

• Online model training will continuously improve the accuracy

Feature

Extraction

Feature A

Feature B

Re-arrangement

f_{Ak}

f_{A2}

f_{A1}

f_{B1}

f_{B2}

f_{вк}

f_{A1}

t_{A2}

f_{Ak}

f_{B1}

f_{B2}

t_{Bk}

Mxed-Signal Electronic Design Automation Lab.

Predict each metric

Metric 1

Metric 2

Metric N

Probability of metric1_A>metric1_B

Probability of metric2_A>metric2_B

Probability of

metricN_A>metricN_B

Model Comparison

□ The proposed model is similar to a binary classification

• Often solved by support vector machine (SVM) model

□ From the experiment, DNN is always better than SVM

- Relationship of analog circuits is too complicated for SVM
- Select DNN as our prediction model

Mxed-Signal Electronic Design Automation Lab.

- Sizing same circuit with 50 iterations by SVM and DNN
- Compare model accuracy with real simulation data

11

Variation-aware Sizing

Including process variations consideration, the robustness of solution is guaranteed

Difficulty comes from the way to obtain design yield

- Monte Carlo (MC) analysis is the most common approach
 - Huge amount of simulations
- Few MC analyses are required for each sizing iteration
 - Extremely time-consuming
 - Infeasible for large circuit

□ Require an efficient approach to evaluate the design yield

• Force-directed model

Force-directed Model_[9]

□ Imagine the Pass/Fail samples are in an energy system

• Nominal design is the reference point (P_{ref})

Determine the new nominal point with better yield

- Far from the Fail group (repulsion)
- Close to the Pass group (attraction)

Mxed-Signal Electronic Design Automation Lab.

[9] C. Kuo, Y. Chen, I. Tsai, L. Chan, and C. J. Liu, "Behavior-level vield enhancement approach for large-scaled analog circuits," Design Automation Conference, pp. 903-908, 2010.

Yield Estimation with Force Model

- Use the magnitude of the resultant force as rough yield estimation
 - Replace the expensive MC simulation

$$F_{cd} = \sum_{p \in PASS} \vec{D}_p + \sum_{f \in FAIL} \vec{D}_f$$
$$\sum_{p \in PASS} (a^{cd} - a^{p}) (a^{*} - \vec{D}) = \sum_{p \in PASS} (a^{cd} - a^{cd})$$

$$\vec{D}_p = \sum_i (c_i^{cd} - c_i^p) / c_i^* \quad \vec{D}_f = \sum_i (c_i^f - c_i^{cd}) / c_i^*$$

□ Cannot give an accurate yield value

- Will not scarify the solution too much
 - EA has good tolerance
- Significantly reduce computation cost
 - No extra simulations are required

 Nominal point 	• Pass	• Fail
	P ²	÷.
° ° • • •	-	-•
ంతం		
$\downarrow \qquad \qquad$	J	$\rightarrow \rightarrow p_1$
Small force	Larg	e force
Low improve capacity	→High imp	rove capaci
\rightarrow High yield	→ Lo	w yield

Methods	Monte Carlo	Force-directed model	
Cost	Expensive → Costly simulations	Cheap → Simple equations	
Yield Accuracy	Accurate value	Enough to rank	

Sizing with Force-directed model

□ Replace the MC analysis with force-directed model

Outline

□ Introduction

Proposed Circuit Sizing Methodology

D Experiment Results

Conclusion

Environment

□ Implementation

- Intel Xeon Gold 6248 CPU at 2.50GHz and 186GB memory
- Python language and TensorFlow package
- Simulator: Synopsys's HSPICE

□ Sizing circuits

- Two-stage operational amplifier (TSMC 0.18µm process)
- Variable Gain Amplifier (TSMC 65nm process)
- Analog-to-digital converter input buffer (TSMC 28nm process)

ML Model Analysis with OPA

□ Ensure the model can perform well in sizing flow

Force Model Analysis with OPA

□ Verify the feasibility of the force-directed model

- Clear trend between the force value and the real yield
 - Enough to guide the EA optimization
- Much less simulation effort

Two-stage OPA (TSMC 0.18um)

		w/o DNN assisted →Converge slower	w/ D →Co	w∕ DNN assisted →Converge faster	
Metrics	Spec	EA (w/o yield opt.)	EA +DNN	EA+DNN+ Force model(ours)	
Gain (dB)	≥ 70	70.69	71.35	73.6	
PM (°)	≥ 60	60.26	60.33	61.02	
$P_{DC}(\mu W)$	≤ 1000	799.9	832.2	929.4	
GBW (MHz)	≥ 5	5.36	5.37	5.56	
SR (V/µs)	≥ 10	10M	10M	10M	
#Iteration		292	30	47	
#Total Sim.		10393	2009	9554	
Yield(%)		34.5%	51.7%	97.5%	

20

Variable Gain Amplifier (TSMC 65nm)

	EA (w/o yield opt.)	EA+MC	ORDE	EA +DNN+MC	EA+DNN+ Force model(ours)	
Gain (dB)	18.07	19.02	18.68	19.50	18.88	
PM (°)	92.27	95.54	96.06	95.83	96.00	
$P_{DC}(\mu W)$	479.5	471.2	469.6	463.6	420.7	
GBW (MHz)	8.22	8.10	8.03	9.04	8.22	
#Training	-	-	-	50	50	
#Iteration	45	140	138	36	38	
#Perf. Sim.	1540	4580	4516	1252	1316	
#MC Sim.	1000	561000	62620	258000	8000	
#Total Sim.	2540	565580	67136	259252	9316	
Speedup	-	1x	8.4x	2.2x	60.7x	
Yield(%)	31.3%	96.1%	96.7%	97.8%	97.4%	

Force model replaces expensive MC → Higher speedup

ORDE: Bo Liu, Francisco V. Fernández, and Georges G. E. Gielen, "Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques", IEEE Trans. on CAD, vol. 30, Issue: 6, June 2011

ADC input buffer (TSMC 28nm)

	EA (w/o yield opt.)	EA+MC	ORDE	EA +DNN+MC	EA+DNN+ Force model(ours)
Gain (dB)	70.82	70.95	70.95	70.96	70.95
PM (°)	85.22	85.13	85.16	85.33	85.26
#Training				50	50
#Iteration	94	189	179	36	41
#Perf. Sim.	3053	6098	5773	1202	1362
#MC Sim.	1000	733000	136155	388000	8000
#Total Sim.	4053	739098	141928	389202	9362
Speedup	-	1x	5.2x	1.9x	78.9x
Yield(%)	24.5%	92.1%	91.3%	94.5%	93.1%

Force model replaces expensive MC → Higher speedup

ORDE: Bo Liu, Francisco V. Fernández, and Georges G. E. Gielen, "Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques", IEEE Trans. on CAD, vol. 30, Issue: 6, June 2011

Outline

□ Introduction

Proposed Circuit Sizing Methodology

Experiment Results

Conclusion

Process variation is considered in the proposed ML-assisted EA optimization flow for analog circuit

□ Significant speedup compared to the traditional variation-aware EA optimization

- Reduce the number of simulations
 - ML screens out some useless designs and increase the converge ability
- Reduce computational effort of each iteration
 - Force-directed model replaces the expensive MC simulation

