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Analog Circuit Sizing Challenges

Manually sizing analog circuit is a complicated task

• Non-linear characteristics

• Sensitive to process variation

• Suffer from expensive simulation
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Two steps in analog circuit sizing

• Optimize the nominal performance

• Optimize the parametric yield under 
process variation

Automatic circuit sizing is 
necessary
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Traditional Simulation-based Sizing

Simulation-based sizing
• Simulated annealing (SA)

• Evolutionary algorithm (EA)

Accurate but slow
• Require many iterations to converge

• Each iteration requires expensive simulations

 ML-assisted analog sizing
• BagNet[1]

• AutoCkt[2]

• ESSAB[3]

• Previous works tried to replace simulator
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[1] K. Hakhamaneshi, et. , “BagNet: Berkeley Analog Generator with Layout Optimizer Boosted with Deep Neural Networks,” ICCAD, pp. 1-8, 2019.

[2] K. Settaluri, et., “AutoCkt: Deep Reinforcement Learning of Analog Circuit Designs,” DATE, pp. 490-495, 2020.

[3] A. Budak, et., “An Efficient Analog Circuit Sizing Method Based on Machine Learning-Assisted Global Optimization,” in IEEE TCAD, Early Access.

 Most of them do not consider process variation
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Synthesis with Variations

 In advanced technology, device variations become the 
major factor limiting circuit performance
• Variations are often not considered in traditional sizing algorithms

 Effects of process variations may change
• Transistor width (W)

• Channel length (L)

• Oxide thickness (tox)

• …

Circuit performance

 The feasible nominal circuit may have a serious yield loss
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[4] Y. Chen, W. Wu, C. J. Liu, and J. C. Li, “Simultaneous 

Optimization of Analog Circuits With Reliability and Variability 

for Applications on Flexible Electronics,” in IEEE TCAD, vol. 33, 

no. 1, pp. 24-35, Jan. 2014.
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ORDE

Variation-aware analog sizing

• ORDE[5]

 Reduce Monte-Carlo samples by 
optimal computing budget 
allocation
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[5] B. Liu et., “Efficient and Accurate Statistical Analog Yield Optimization and Variation-Aware Circuit Sizing Based on Computational 

Intelligence Techniques,” in IEEE TCAD, vol. 30, no. 6, pp. 793-805, June 2011.

Not improve the converge capability

Many useless candidates 

are generated
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Contributions

 In this work

• Machine learning-assisted evolutionary algorithm

 Pruning the required simulation amount

 Enhancing the convergence speed of the search engine

• Fast yield evaluation without using Monte Carlo analysis

 Force model

 Reduce the computational cost of yield evaluation

• Aid designer to optimize design with robustness
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ML-assisted Analog Sizing

ML model helps to screen out useless simulations

9

Predictor chooses 

design samples that 

are very likely to have 

better performance
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 Predicting the exact performance is difficult and 
unnecessary
• Predicting a sample is "better" or "worse" is easier[4]

 Binary classification problem

 Prediction model
• Input

 Two circuit designs

• Output
 The probability of that 

design A is better than design B on metrici

• Online model training will continuously improve the accuracy

Prediction Model
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[4] K. Hakhamaneshi, N. Werblun, P. Abbeel, and V. Stojanović, 

“BagNet: Berkeley Analog Generator with Layout Optimizer 

Boosted with Deep Neural Networks,” ICCAD, pp. 1-8, 2019.
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Model Comparison

 The proposed model is similar to a binary classification

• Often solved by support vector machine (SVM) model

 From the experiment, DNN is always better than SVM

• Relationship of analog circuits is too complicated for SVM

• Select DNN as our prediction model
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• Sizing same circuit with 50 

iterations by SVM and DNN

• Compare model accuracy with 

real simulation data
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Variation-aware Sizing

 Including process variations consideration, the robustness 
of solution is guaranteed

Difficulty comes from the way to obtain design yield

• Monte Carlo (MC) analysis is the most common approach

 Huge amount of simulations

• Few MC analyses are required for each sizing iteration

 Extremely time-consuming

 Infeasible for large circuit

 Require an efficient approach to evaluate the design yield 

• Force-directed model
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Force-directed Model[9]

 Imagine the Pass/Fail samples are in an energy system
• Nominal design is the reference point (Pref)

Determine the new nominal point with better yield
• Far from the Fail group (repulsion)

• Close to the Pass group (attraction)
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Performance level

[9] C. Kuo, Y. Chen, I. Tsai, L. Chan, and C. J. Liu, “Behavior-level 

yield enhancement approach for large-scaled analog circuits,” 

Design Automation Conference, pp. 903-908, 2010.
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Yield Estimation with Force Model

 Use the magnitude of the resultant force 
as rough yield estimation

• Replace the expensive MC simulation

 Cannot give an accurate yield value

• Will not scarify the solution too much

 EA has good tolerance

• Significantly reduce computation cost

 No extra simulations are required
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Methods Monte Carlo
Force-directed 

model

Cost
Expensive

 Costly simulations

Cheap
 Simple equations

Yield

Accuracy
Accurate value Enough to rank

Small force

Low improve capacity

 High yield

Large force

High improve capacity

 Low yield
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Sizing with Force-directed model

Replace the MC analysis with force-directed model
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Force-directed model 

replaces the expensive 

yield estimation

Accurate yield estimation 

after the sizing

𝑐𝑜𝑠𝑡 𝑥 = α ∗
𝑖
𝑤𝑖𝑝𝑖(𝑥) + 𝛽 ∗ 𝐹𝑐𝑑

force

score

weighted 

performance

Cost function used in 

sample discarding: 
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Environment

 Implementation
• Intel Xeon Gold 6248 CPU at 2.50GHz and 186GB memory

• Python language and TensorFlow package

• Simulator: Synopsys’s HSPICE

Sizing circuits
• Two-stage operational amplifier (TSMC 0.18μm process)

• Variable Gain Amplifier (TSMC 65nm process)

• Analog-to-digital converter input buffer (TSMC 28nm process)
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ML Model Analysis with OPA
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Actual Positive Actual Negative

Predict Positive True Positive (TP) False Positive (FP)

Predict Negative False Negative (FN) True Negative (TN)

Accuracy =
TP+TN

TP+TN+FP+FN
Recall =

TP

TP+FN

F1 Score = 2 ∗
Precision∗Recall

Precision+Recall
Precision =

TP

TP+FP

Two-stage OPA (TSMC 0.18um)

Accuracy Recall Precision F1 score

96.91% 81.29% 77.77% 0.7949

Ensure the model can perform well in sizing flow
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Force Model Analysis with OPA

Verify the feasibility of the force-directed model

• Clear trend between the force value and the real yield

 Enough to guide the EA optimization

• Much less simulation effort

19

Corr.0.79



Two-stage OPA (TSMC 0.18um)
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Metrics Spec EA

(w/o yield opt.)

EA

+DNN

EA+DNN+

Force model(ours)

Gain (dB) ≥ 70 70.69 71.35 73.6

PM (°) ≥ 60 60.26 60.33 61.02

PDC (μW) ≤ 1000 799.9 832.2 929.4

GBW (MHz) ≥ 5 5.36 5.37 5.56

SR ( V/μs ) ≥ 10 10M 10M 10M

#Iteration -- 292 30 47

#Total Sim. -- 10393 2009 9554

Yield(%) -- 34.5% 51.7% 97.5%

w/o DNN assisted

Converge slower

w/ DNN assisted

Converge faster



Variable Gain Amplifier (TSMC 65nm)
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Force model replaces expensive MC

 Higher speedup

EA

(w/o yield opt.)
EA+MC ORDE

EA

+DNN+MC

EA+DNN+

Force model(ours)

Gain (dB) 18.07 19.02 18.68 19.50 18.88

PM (°) 92.27 95.54 96.06 95.83 96.00

PDC (μW) 479.5 471.2 469.6 463.6 420.7

GBW (MHz) 8.22 8.10 8.03 9.04 8.22

#Training - - - 50 50

#Iteration 45 140 138 36 38

#Perf. Sim. 1540 4580 4516 1252 1316

#MC Sim. 1000 561000 62620 258000 8000

#Total Sim. 2540 565580 67136 259252 9316

Speedup - 1x 8.4x 2.2x 60.7x

Yield(%) 31.3% 96.1% 96.7% 97.8% 97.4%

ORDE: Bo Liu, Francisco V. Fernández, and Georges G. E. Gielen, “Efficient and Accurate Statistical Analog Yield Optimization and 

Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques”, IEEE Trans. on CAD, vol. 30, Issue: 6, June 2011



ADC input buffer (TSMC 28nm)
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ORDE: Bo Liu, Francisco V. Fernández, and Georges G. E. Gielen, “Efficient and Accurate Statistical Analog Yield Optimization and 

Variation-Aware Circuit Sizing Based on Computational Intelligence Techniques”, IEEE Trans. on CAD, vol. 30, Issue: 6, June 2011

Force model replaces expensive MC

 Higher speedup

EA

(w/o yield opt.)
EA+MC ORDE

EA

+DNN+MC

EA+DNN+

Force model(ours)

Gain (dB) 70.82 70.95 70.95 70.96 70.95

PM (°) 85.22 85.13 85.16 85.33 85.26

#Training -- -- -- 50 50

#Iteration 94 189 179 36 41

#Perf. Sim. 3053 6098 5773 1202 1362

#MC Sim. 1000 733000 136155 388000 8000

#Total Sim. 4053 739098 141928 389202 9362

Speedup - 1x 5.2x 1.9x 78.9x

Yield(%) 24.5% 92.1% 91.3% 94.5% 93.1%



Mixed-Signal Electronic Design Automation Lab.

Outline

 Introduction

Proposed Circuit Sizing Methodology

Experiment Results

Conclusion

23



Mixed-Signal Electronic Design Automation Lab.

Conclusion

Process variation is considered in the proposed
ML-assisted EA optimization flow for analog 
circuit

Significant speedup compared to the traditional 
variation-aware EA optimization

• Reduce the number of simulations

 ML screens out some useless designs and increase the converge 
ability

• Reduce computational effort of each iteration

 Force-directed model replaces the expensive MC simulation
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Thank You!


