A Novel and Efficient Bayesian Optimization
Approach for Analog Designs with Multi-Testbench

Jingyao Zhaol, Changhao Yan?, Zhaori Bi?,

Fan Yang?, Xuan Zeng?! and Dian Zhou?

! Fudan University, Shanghai, P. R. China

2 University of Texas at Dallas, Dallas, USA




Resume

* Name
* Jingyao Zhao

 Affiliation
* Microelectronics Department, Fudan University, Shanghai, China

* Resume

* | received the B.S. degree in microelectronics from Fudan University,
Shanghai, China, in 2019. She is currently pursuing master's degree
with State Key Laboratory of Application Specific Integrated Circuits
and System, Microelectronics Department, Fudan University, Shanghai,
China. Her current research interests include analog circuit design
automation and optimization.



* Problem Definition
* Multi-Testbench Optimization Problem
 Circuit Sizing Formulation

* Review of Analog Circuit Optimization Algorithms
* Model-based optimization algorithms
e Simulation-based optimization algorithms
* Bayesian Optimization

* Proposed Method

* Predictive Entropy Search with Constraints
* Feasibility Regions Exploration of Constraints
e Multi-modal Optimization of FEI

* Experimental Results
* Two-Stage Operational Amplifier
e Low-Power Amplifier

* Conclusion



Multi-Testbench Optimization Problem

e Simulation testbench Operational amplifier
A tuple of peripheral test circuit, excitation source design with Multi-testbench
and simulation type is termed a testbench _ N i
* Multi-testbench optimization problem o ~ |55
* Target: find the design parameters that make the ——
analog circuit work fine under several or dozens of |! ° =~ il
different testbenches | B It

analysis

* Difficulties e I ~;+

I

* Equations and derivatives are inaccessible | [ Monte-Cario
|
I

* Circuit simulations are time-consuming



Circuit Sizing Formulation

* Traditional analog circuit sizing formulation Operational amplifier
minimize f(x) = ¢y (x) design with Multi-testbench
s-t ci(x) >0, i€[1LN] Formulation Testbenches performances
.

Multi-testbench optimization formulation

minimize f(x) i B S Ml
y !_s_t _ liNl i6_0°_ — Jl : S-parameter :
s.t. c{(x) > O Ij € [1r |Ft|]rl € [11 |T|] :’__S}_:lg\,_/;sL i s i . .
“I‘ sy -f' .
* Partition performance set into F = {F,,t € [1,|F|]} i I I ,
« F; contains the circuit performances from the t-th T
testbench

ci(x) is the j-th performance in the t-th testbench



Review of Analog Circuit Optimization Algorithms

* Model-based optimization algorithms
* Geometric programming [1]
Posynomial approximation for circuit performances
Guarantee transforming to a convex problem which has global optimum

- Cannot guarantee the accuracy of the models especially for the large-scale circuits

e Simulation-based optimization algorithms

 Differential evolutionary [2]

* Add penalty functions of constraints into the objective

* Transform the constrained optimization into an unconstrained one
* Particle swarm optimization [3]

* Simulation-based optimization is generally accurate, but convergence rate of
heuristic algorithms is low

[1] M. del Mar Hershenson, “Design of pipeline analog-to-digital converters via geometric programming,” in Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design, 2002, pp. 317-324.
[2] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang et al., “Analog circuit optimization system based on hybrid evolutionary algorithms,” Integration, vol. 42, no. 2, pp. 137-148, 2009.
[3] R. Vural and T. Yildirim, “Analog circuit sizing via swarm intelligence,” AEU-International journal of electronics and communications, vol. 66, no. 9, pp. 732-740, 2012.



Bayesian Optimization

* Two components

e Surrogate model

* provide the posterior prediction and
corresponding uncertainty

* Acquisition function

* guide proposing the next data points of
simulation during the optimization

Initial Dataset

!

Surrogate Model

}

simulators Acquisition Function

!

Promising Points
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Optimization Results




Bayesian Optimization

e Gaussian Process (GP) surrogate model
* The prediction of GP is a normal distribution
y ~ N(u(x), 0% (x))
* u(xqy) can be viewed as the predictive mean
for a new sample x,

« Predictive variance a%(xy) represents the
uncertainty of prediction

 Traditional acquisition function

e Evaluate both objective and constraints at the
same selected point by maximizing acquisition
function a

% : Samples
*® : True function
: GP model
>
Design Space
>

Design Space
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Multi-testbench Bayesian Optimization

. . % : Next samples
* Motivation y(Tl)A » : Samples
* In optimization, the constraints and the
objective are not equally important >
* Traditional acquisition function Design Space
indiscriminately run all testbenches for a
new design, which is time-consuming cl(Tz)"‘ H
>

4 Design Space
: @ . .

S » >

3 ; , Design Space



Multi-testbench Bayesian Optimization

* How to select testbench to be simulated T4
* Only simulate the most important

testbench at each iteration for efficiency >
consideration Design Space
* Predictive Entropy Search with SN v Nowt s
Constraints (PESC) [4] 1372 . 3 * : Samples

* PESC, i.e. information gain, is applied as the
criterion of importance for each testbench

* We only choose the testbench with Design Space
maximal information gain for finding the A
: c2(T3)
global optimum x,
>

Design Space

[4] J. M. Hern"andez-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman, and Z. Ghahramani, “A general framework for constrained Bayesian optimization
using information-based search,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 5549-5601, 2016.




Acquisition Function of PESC

* PESC concept

* Information gain measures the uncertainty reduction of the global optimum x,,
if a new data pair (x,y) is added

a(x) = Hlx,|D] — Ey{H[x.|D U (x,y)]} Exact evaluation is infeasible!

Differential entropy: Training dataset:
H[x] = fx p(x)logp(x)dx D = {(Xn, Yn)In<n



Acquisition Function of PESC

* PESC concept

* Information gain measures the uncertainty reduction of the global optimum x,, if a
new data pair (X,y) is added

a(x) = H[x,|D] - Ey{H[x,ID U (x,y)]}

the symmetry of mutual information

a(x) = Hly|D, x| — Ex {Hly|D,x,x.]}

* Both entropy terms are now with respect to the predictive distribution of y ~ N(u, K)



Acquisition Function of PESC

* Information gain of a testbench

* Under the assumption that the objective and constraints are independent, rewrite the
PESC acquisition function in the form of summation

N+1 N.+1

a(x) = z —logo?(x) — z E, logaz(xlx )]

Predictive variance from GP

» Simulators are invoked based on testbenches, thus information gain of a testbench is
the sum of the information gain of the performances inside this testbench

|F¢l |F¢l

1
o0, (%) —Za'oc)—Z{—loga () — Ey, [ 10go?; (x|x.)]}



objective
X2

constraint
X2

ok

"

-2 -1 0 1 2

X1

(a) True objective

3 \%_/ 4
2

1 3
op\ 1
i AN

9 ]

0 1
X1

(e) True constraint

2

2000
1600
1200
800
400

=

—400

Dilemma of PESC

* Inadequate exploration ability
* The power of PESC is on selecting the suitable testbench
* Inside a testbench, the exploration ability of PESC is inadequate
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Feasibility Regions Exploration of Constraints

* Expected Improvement
Improvement of y  Current minimum objective

I(y,T) = max(0,t — y)

EI(x) = E[I(y,7)] = (t — p(x))® & ; gc()x)) + o(ObC ; gc()x))

Where ® and ¢ are the Cumulative Distribution Function (CDF) and Probability
Density Function (PDF) of standard normal distribution



Feasibility Regions Exploration of Constraints

* Feasibility Expected Improvement
e Fix T = 0 for exploring feasibility boundary

B _|_ ~~~~~ —pfX ') ! p(x)
FEI(x) = E[I(y,0)] :ygf_"(:x_)ff_ﬂ_);)rl_ o(x)p( O'(X))

search into the current feasible region

FEI(x) = 6(x)¢ (;’ES?)

* Large o(x) explore unknown regions
e u(x)closeto 0 exploit boundaries of predicted feasible regions



Multi-modal Optimization of FE|

* Multi-modal problem

max |XS]|
XSCD

FE
Set size of local optimums

* Locate all local optimums of FEI function by
NMMSO method [5]

* DBSCAN clustering algorithm [6]

* Avoid repeated exploration in adjacent regions
* Clustering centers are still local peaks

[5] J. E. Fieldsend, “Running up those hills: Multi-modal search with the niching migratory multi-swarm optimiser,” in CEC. IEEE, 2014, pp. 2593—-2600.
[6] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” AAAI Press, 1996.



PESC With Feasibility Expected Improvement

* We apply PESC and FEl alternately in the —n— 14 +—np— +H14

iterations to combine the merits of both _, a., ﬂ

acquisition functions

3—ﬁ— 70 3 -
60 ) °

] 27 50 2 >
%Q‘ 1 . 8 .
[=] | 20 | e

" o :

-1 0 -1 -

-2 -1 0 1 2 -2 -1 0 1 2
X1 X1 X1
(a) True objective (b) WEIBO (c) PESC (d) PESC with FEI

constraint

3 \%_/ 2000 3 v \Qa:_/ . 3 \qg/ o® ( 7
2 1600 ° 2 °
s R . L l
/ :00 ¢ ./ 0 (] ¢ ./ 0.\ : ‘
1 0 i 2 - 2 1 :

X1 X1 X1

(e) True constraint () WEIBO (g) PESC (h) PESC w1th FEI




Time-Weighted PESC (wPESC)

* Time-weighted term is proposed to balance information gain and simulation time

\ a;(x;) 1/c; || |F|
awpESC(Xt, 1) 5 — —HwW— o = Z a,(x),C = Z 1/c,
t=1 t=1

Prefer large information gain Prefer less simulation time

* C; is the empirical simulation time of the t-th testbench

* W is a customized weight coefficient

The testbench with the maximal ay,prsc(x;, t) is selected to simulate at x;



Experimental Results

* Circuits tested
* Two-Stage Operational Amplifier
* Low-Power Amplifier

e Simulation-based Algorithms compared
Differential evolutionary(DE)

GASPAD [7]

WEIBO [8]

MTBO [9]

[7] B. Liu, D. Zhao, P. Reynaert, and G. G. Gielen, “Gaspad: A general and efficient mm-wave integrated circuit synthesis method based on surrogate model assisted evolutionary
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 2, pp. 169-182, 2014.

[8] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng et al., “An efficient bayesian optimization approach for automated optimization of analog circuits,” IEEE Transactions on Circuits and
Systems |: Regular Papers, vol. 65, no. 6, pp. 1954-1967, 2017.

[9] J. Huang, S. Zhang, C. Tao, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Bayesian optimization approach for analog circuit design using multitask gaussian process,” in 2021 IEEE
International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1-5.



Experiment: Two-Stage Operational Amplifier

* 180nm CMOS process e Design specifications:

10 Design variables maximize GAIN

* 5 testbenches St PM > 60°
,.I.gﬁ demand ) i~—UGF > 40MHz
e TR ik
s s "”"IIJ PSRR>55dB
L ' CMRR > 60dB
( Ibias CCI— RO > 19

SR Sk > 2000 i

L | <

Mﬂ |——| |L/|_I4 [ % CL

4



Experiment: Two-Stage Operational Amplifier

* Comparison
* Our algorithm find the best GAIN

* The wPESC+FEI+MM method can gain 2.71x speedup compared with WEIBO, while
the most recent method MTBO proposed in 2021 just gains 1.14x speedup

* Both PESC and wPESC reasonably allocate more simulation points to Tb2, which is
very difficult to reach its specifications

Spec/Algorithm PM? UGF* PSRR’> CMRR® R.,* SR’ GAIN' GAIN! GAIN! Tbl Th2 Tb3 Th4 ThS | Weighted Speedup
c (“) (MHz) (dB) (dB) (€2) (us) worst. (dB)  mean. (dB) best. (dB) | (22%) [1(26%)y (16%) (12%) (24%) | Avg. #Sim
Spec =60 =40 =55 =60 <1 =200 Max Max Max - - - - - -
~ DE[S] | 6272 41.93  59.07 8406 052 43155 | 8628  87.20  88.86 | 1867 1867, 1867 1867 1867 | 1867  0.08x
GASPADI18] 60.70  40.73 59.11 84.23 0.51 476.86 88.16 88.84 89.36 211 211 211 211 211 211 0.74 %
WEIBO|[§] 60.60  40.54 59.40 84.32 0.51 43475 87.97 88.95 80.43 157 157 157 157 157 157 1 %
MTBO[9] 61.27  40.19 59.94 84.77 0.47 38375 88.51 89.20 89.69 138 138 138 138 138 138 1.14 x
~  PESC | 61.16 40.87 59.09 8516 042 48187 | 8877 8934 8993 [ 131 L6l 22 4 30 | 8  180x
wPESC 61.23  40.97 59.12 8§5.13 0.42 49553 88.35 89.22 89.92 114 141 17 38 23 75 2.09x
wPESC+FEI 61.25  40.87 59.07 8520  0.42 480.05 88.89 89.36 89.96 81 124 23 36 23 64 2.45 x
wPESC+FEI+MM | 61.21 40.64 59.42 85.19 0.42 44335 88.95 89.36 89.93 71 120 16 29 19 58 2.71x




Experiment: Low-Power Amplifier

* 350nm CMOS process e Design specifications:

11 Design variables maximize 10

e 3 testbenches St "GAIN > 110dB b0
SRR > 0.18V /us
Voo SRF > 0.2V /us
o |I<J ||: I I ||: /”
VA | EI |- - | | e o .
| = lt :Loose constraints :
—] — = =
Vin Vip "_”: :.II_"

}ﬁ:ﬁﬁ{ T H:LL:




Experiment: Low-Power Amplifier

* Comparison
e Our algorithm find the best IQ

e Our proposed method gains 3.89x speedup over WEIBO, while MTBO just gains
1.52x speedup

* PESC method significantly reduces the number of simulation points wasted on Th3

Spec/Algorithm mean_GAINZ mean_SRR> mean_SRF> mean_IQ! mean_IQ! mean_IQ! Tbl Tb2 ,Tb3 Weighted Speedup
(dB) (V/us) (V/us) worst. (UA) mean. (UA) best. (UA) (7%) (37%) 156%) Avg. #Sim
Spec =110 =>0.18 =>0.2 Min Min Min

- TDE)5] | o4 T 023 0 T 029 | 2017 T T 1987 1943 | 2730 0 2730 12730 ;| 2730 0.06x

GASPADJ 18] 110.12 0.23 0.28 19.19 19.11 19.04 415 415 415 415 0.41 x
WEIBO[ 8] 110.04 0.23 0.28 19.21 19.11 19.03 171 171 171 171 1

MTBO[9] 110.13 0.23 0.28 19.22 19.06 19.02 116 116 116 116 1.52 %

- " PESC | T ttoaa 023 0 028 | 1o T 1905 0 T 1902 | 84 0 158 0 Ya2e 0| 790 T T 216x
wPESC 110.14 0.23 0.28 19.10 19.05 19.02 87 140 26 73 2.38 %
wPESC+FEI 110.09 0.23 0.28 19.05 19.04 19.02 67 87 24 51 3.35 X
wPESC+FEI+MM 110.13 0.23 0.28 19.06 19.03 19.02 48 75 21 43 3.89x
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