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Multi-Testbench Optimization Problem

• Simulation testbench
• A tuple of peripheral test circuit, excitation source

and simulation type is termed a testbench

• Multi-testbench optimization problem
• Target: find the design parameters that make the 

analog circuit work fine under several or dozens of 
different testbenches

• Difficulties
• Equations and derivatives are inaccessible
• Circuit simulations are time-consuming 

Operational amplifier
design with Multi-testbench

Design parameters



• Traditional analog circuit sizing formulation 

Circuit Sizing Formulation

𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝒇𝒇 𝒙𝒙 = 𝒄𝒄𝟎𝟎 𝒙𝒙
𝐬𝐬. 𝐭𝐭. 𝒄𝒄𝒊𝒊 𝒙𝒙 > 𝟎𝟎, 𝒊𝒊 ∈ [𝟏𝟏,𝑵𝑵𝒄𝒄]

• Multi-testbench optimization formulation

• Partition performance set into 𝓕𝓕 = {𝑭𝑭𝒕𝒕, 𝒕𝒕 ∈ 𝟏𝟏, 𝓕𝓕 }

• 𝑭𝑭𝒕𝒕 contains the circuit performances from the t-th
testbench

• 𝒄𝒄𝒕𝒕
𝒋𝒋(𝒙𝒙) is the 𝑗𝑗-th performance in the 𝑡𝑡-th testbench

𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝒇𝒇 𝒙𝒙
𝐬𝐬. 𝐭𝐭. 𝒄𝒄𝒊𝒊

𝒋𝒋 𝒙𝒙 > 𝟎𝟎 , 𝒋𝒋 ∈ 𝟏𝟏, 𝑭𝑭𝒕𝒕 , 𝒊𝒊 ∈ 𝟏𝟏, 𝓕𝓕

Operational amplifier
design with Multi-testbench



Review of Analog Circuit Optimization Algorithms

• Model-based optimization algorithms
• Geometric programming [1]

• Posynomial approximation for circuit performances
• Guarantee transforming to a convex problem which has global optimum

• Cannot guarantee the accuracy of the models especially for the large-scale circuits

• Simulation-based optimization algorithms
• Differential evolutionary [2]

• Add penalty functions of constraints into the objective
• Transform the constrained optimization into an unconstrained one

• Particle swarm optimization [3]
• Simulation-based optimization is generally accurate, but convergence rate of 

heuristic algorithms is low

[1] M. del Mar Hershenson, “Design of pipeline analog-to-digital converters via geometric programming,” in Proceedings of the 2002 IEEE/ACM international conference on Computer-aided design, 2002, pp. 317–324.
[2] B. Liu, Y. Wang, Z. Yu, L. Liu, M. Li, Z. Wang et al., “Analog circuit optimization system based on hybrid evolutionary algorithms,” Integration, vol. 42, no. 2, pp. 137–148, 2009.
[3] R. Vural and T. Yildirim, “Analog circuit sizing via swarm intelligence,” AEU-International journal of electronics and communications, vol. 66, no. 9, pp. 732–740, 2012.



Bayesian Optimization

• Two components
• Surrogate model

• provide the posterior prediction and 
corresponding uncertainty

• Acquisition function
• guide proposing the next data points of 

simulation during the optimization

Optimization Results

Acquisition Function

Promising Points

Surrogate Model

Initial Dataset

simulators



• Gaussian Process (GP) surrogate model
• The prediction of GP is a normal distribution 
𝒚𝒚 ∼ 𝑵𝑵(𝝁𝝁 𝒙𝒙 ,𝝈𝝈𝟐𝟐 𝒙𝒙 )

• 𝝁𝝁 𝒙𝒙𝟎𝟎 can be viewed as the predictive mean 
for a new sample 𝒙𝒙𝟎𝟎

• Predictive variance 𝝈𝝈𝟐𝟐 𝒙𝒙𝟎𝟎 represents the 
uncertainty of prediction

• Traditional acquisition function
• Evaluate both objective and constraints at the 

same selected point by maximizing acquisition 
function 𝜶𝜶

Bayesian Optimization

𝜶𝜶
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Multi-testbench Bayesian Optimization

• Motivation
• In optimization, the constraints and the 

objective are not equally important
• Traditional acquisition function 

indiscriminately run all testbenches for a 
new design, which is time-consuming

𝒚𝒚(𝑻𝑻𝟏𝟏)

Design Space

: Next samples
: Samples

𝒄𝒄𝟏𝟏(𝑻𝑻𝟐𝟐)

Design Space

𝒄𝒄𝟐𝟐(𝑻𝑻𝟑𝟑)

Design Space



Multi-testbench Bayesian Optimization

• How to select testbench to be simulated
• Only simulate the most important

testbench at each iteration for efficiency 
consideration

• Predictive Entropy Search with 
Constraints (PESC) [4]

• PESC, i.e. information gain, is applied as the 
criterion of importance for each testbench

• We only choose the testbench with 
maximal information gain for finding the 
global optimum 𝒙𝒙∗

Design Space

Design Space

Design Space

: Next samples
: Samples

[4] J. M. Hern´andez-Lobato, M. A. Gelbart, R. P. Adams, M. W. Hoffman, and Z. Ghahramani, “A general framework for constrained Bayesian optimization 
using information-based search,” The Journal of Machine Learning Research, vol. 17, no. 1, pp. 5549–5601, 2016.

𝒄𝒄𝟏𝟏(𝑻𝑻𝟐𝟐)

𝒄𝒄𝟐𝟐(𝑻𝑻𝟑𝟑)

𝒚𝒚(𝑻𝑻𝟏𝟏)



Acquisition Function of PESC

• PESC concept
• Information gain measures the uncertainty reduction of the global optimum 𝒙𝒙∗, 

if a new data pair 𝐱𝐱, 𝐲𝐲 is added

𝛂𝛂 𝐱𝐱 = H 𝒙𝒙∗ 𝓓𝓓 − 𝔼𝔼𝐲𝐲{H 𝒙𝒙∗ 𝓓𝓓 ∪ 𝐱𝐱, 𝐲𝐲 } Exact evaluation is infeasible!

Differential entropy:
H 𝒙𝒙 = ∫𝝌𝝌 𝒑𝒑 𝒙𝒙 𝒍𝒍𝒍𝒍𝒍𝒍𝒑𝒑 𝒙𝒙 𝒅𝒅𝒙𝒙

Training dataset:
𝓓𝓓 = 𝒙𝒙𝒏𝒏,𝒚𝒚𝒏𝒏 𝒏𝒏≤𝑵𝑵



Acquisition Function of PESC

• PESC concept
• Information gain measures the uncertainty reduction of the global optimum 𝒙𝒙∗, if a 

new data pair 𝐱𝐱, 𝐲𝐲 is added

• Both entropy terms are now with respect to the predictive distribution of 𝐲𝐲 ∼ 𝑵𝑵(𝝁𝝁,𝑲𝑲)

𝛂𝛂 𝐱𝐱 = H 𝒙𝒙∗ 𝓓𝓓 − 𝔼𝔼𝐲𝐲{H 𝒙𝒙∗ 𝓓𝓓 ∪ 𝐱𝐱, 𝐲𝐲 }

𝛂𝛂 𝐱𝐱 = H 𝐲𝐲 𝓓𝓓, 𝐱𝐱 − 𝔼𝔼𝐱𝐱∗{H 𝐲𝐲 𝓓𝓓, 𝐱𝐱, 𝐱𝐱∗ }

the symmetry of mutual information



Acquisition Function of PESC

• Information gain of a testbench
• Under the assumption that the objective and constraints are independent, rewrite the 

PESC acquisition function in the form of summation

• Simulators are invoked based on testbenches,  thus information gain of a testbench is 
the sum of the information gain of the performances inside this testbench

𝛂𝛂 𝐱𝐱 = �
𝒊𝒊=𝟏𝟏

𝑵𝑵𝒄𝒄+𝟏𝟏 𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈𝒊𝒊𝟐𝟐 𝒙𝒙 − �

𝒊𝒊=𝟏𝟏

𝑵𝑵𝒄𝒄+𝟏𝟏

𝔼𝔼𝒙𝒙∗[
𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈𝒊𝒊𝟐𝟐 𝒙𝒙 𝒙𝒙∗ ]

Predictive variance from GP

𝛂𝛂𝐭𝐭 𝐱𝐱 = �
𝒋𝒋=𝟏𝟏

𝑭𝑭𝒕𝒕

𝜶𝜶𝒕𝒕
𝒋𝒋 𝒙𝒙 = �

𝒋𝒋=𝟏𝟏

𝑭𝑭𝒕𝒕

{
𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈𝒕𝒕,𝒋𝒋𝟐𝟐 𝒙𝒙 − 𝔼𝔼𝒙𝒙∗[

𝟏𝟏
𝟐𝟐
𝐥𝐥𝐥𝐥𝐥𝐥𝝈𝝈𝒕𝒕,𝒋𝒋𝟐𝟐 𝒙𝒙 𝒙𝒙∗ ]}



Dilemma of PESC

• Inadequate exploration ability
• The power of PESC is on selecting the suitable testbench
• Inside a testbench, the exploration ability of PESC is inadequate



Feasibility Regions Exploration of Constraints

• Expected Improvement

]𝑬𝑬𝑬𝑬(𝒙𝒙) = 𝔼𝔼[𝑬𝑬(𝒚𝒚, 𝝉𝝉) = 𝝉𝝉 − 𝝁𝝁 𝒙𝒙 𝚽𝚽(
𝝉𝝉 − 𝝁𝝁 𝒙𝒙
𝝈𝝈 𝒙𝒙

) + 𝝈𝝈 𝒙𝒙 𝝓𝝓(
𝝉𝝉 − 𝝁𝝁 𝒙𝒙
𝝈𝝈 𝒙𝒙

)

)𝑬𝑬(𝒚𝒚, 𝝉𝝉) = 𝐦𝐦𝐦𝐦𝐱𝐱(𝟎𝟎, 𝝉𝝉 − 𝒚𝒚

Improvement of 𝐲𝐲 Current minimum objective

Where 𝚽𝚽 and𝝓𝝓 are the Cumulative Distribution Function (CDF) and Probability 
Density Function (PDF) of standard normal distribution



Feasibility Regions Exploration of Constraints

• Feasibility Expected Improvement
• Fix 𝝉𝝉 = 𝟎𝟎 for exploring feasibility boundary

• Large 𝝈𝝈 𝒙𝒙 explore unknown regions
• 𝝁𝝁 𝒙𝒙 close to 𝟎𝟎 exploit boundaries of predicted feasible regions

𝑭𝑭𝑬𝑬𝑬𝑬 𝒙𝒙 = 𝔼𝔼 𝑬𝑬 𝒚𝒚,𝟎𝟎 = −𝝁𝝁 𝒙𝒙 𝜱𝜱(
−𝝁𝝁 𝒙𝒙
𝝈𝝈 𝒙𝒙

) + 𝝈𝝈 𝒙𝒙 𝝓𝝓(
−𝝁𝝁 𝒙𝒙
𝝈𝝈 𝒙𝒙

)

𝑭𝑭𝑬𝑬𝑬𝑬 𝒙𝒙 = 𝝈𝝈 𝒙𝒙 𝝓𝝓
−𝝁𝝁 𝒙𝒙
𝝈𝝈 𝒙𝒙

search into the current feasible region 



Multi-modal Optimization of FEI

• Multi-modal problem

• Locate all local optimums of FEI function by 
NMMSO method [5] 

𝐦𝐦𝐦𝐦𝐱𝐱
𝐗𝐗𝐗𝐗⊆𝐃𝐃

|𝐗𝐗𝐗𝐗|

Set size of local optimums

• DBSCAN clustering algorithm [6]
• Avoid repeated exploration in adjacent regions
• Clustering centers are still local peaks

[5] J. E. Fieldsend, “Running up those hills: Multi-modal search with the niching migratory multi-swarm optimiser,” in CEC. IEEE, 2014, pp. 2593–2600.
[6] M. Ester, H. P. Kriegel, J. Sander, and X. Xu, “A density-based algorithm for discovering clusters in large spatial databases with noise,” AAAI Press, 1996.



PESC With Feasibility Expected Improvement

• We apply PESC and FEI alternately in the 
iterations to combine the merits of both 
acquisition functions

wPESC FEI wPESC ⋯FEI

n 1 n 1



Time-Weighted PESC (wPESC)

• Time-weighted term is proposed to balance information gain and simulation time

• 𝒄𝒄𝒕𝒕 is the empirical simulation time of the 𝑡𝑡-th testbench
• 𝒘𝒘 is a customized weight coefficient
• The testbench with the maximal 𝜶𝜶wPESC 𝒙𝒙𝒕𝒕∗, 𝒕𝒕 is selected to simulate at 𝒙𝒙𝒕𝒕∗

𝜶𝜶wPESC 𝒙𝒙𝒕𝒕∗, 𝒕𝒕 =
𝜶𝜶𝒕𝒕 𝒙𝒙𝒕𝒕∗

𝜶𝜶
+ 𝐰𝐰

𝟏𝟏/𝒄𝒄𝒕𝒕
𝑪𝑪

Prefer large information gain Prefer less simulation time

𝜶𝜶 = �
𝒕𝒕=𝟏𝟏

𝓕𝓕
𝜶𝜶𝒕𝒕 𝒙𝒙𝒕𝒕∗ ,𝑪𝑪 = �

𝒕𝒕=𝟏𝟏

𝓕𝓕
⁄𝟏𝟏 𝒄𝒄𝒕𝒕



Experimental Results 

• Circuits tested
• Two-Stage Operational Amplifier 
• Low-Power Amplifier

• Simulation-based Algorithms compared
• Differential evolutionary(DE)
• GASPAD [7]
• WEIBO [8]
• MTBO [9]

[7] B. Liu, D. Zhao, P. Reynaert, and G. G. Gielen, “Gaspad: A general and efficient mm-wave integrated circuit synthesis method based on surrogate model assisted evolutionary 
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems, vol. 33, no. 2, pp. 169–182, 2014.
[8] W. Lyu, P. Xue, F. Yang, C. Yan, Z. Hong, X. Zeng et al., “An efficient bayesian optimization approach for automated optimization of analog circuits,” IEEE Transactions on Circuits and 
Systems I: Regular Papers, vol. 65, no. 6, pp. 1954–1967, 2017.
[9] J. Huang, S. Zhang, C. Tao, F. Yang, C. Yan, D. Zhou, and X. Zeng, “Bayesian optimization approach for analog circuit design using multitask gaussian process,” in 2021 IEEE 
International Symposium on Circuits and Systems (ISCAS), 2021, pp. 1–5.



Experiment: Two-Stage Operational Amplifier

• 180nm CMOS process
• 10 Design variables
• 5 testbenches

𝐦𝐦𝐦𝐦𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝑮𝑮𝑮𝑮𝑬𝑬𝑵𝑵 Tb1
𝐬𝐬. 𝐭𝐭. 𝑷𝑷𝑷𝑷 > 𝟔𝟔𝟎𝟎°

𝑼𝑼𝑮𝑮𝑭𝑭 > 𝟒𝟒𝟎𝟎𝑷𝑷𝟒𝟒𝟒𝟒 Tb2
𝑷𝑷𝑷𝑷𝑷𝑷𝑷𝑷 > 𝟓𝟓𝟓𝟓𝒅𝒅𝟓𝟓
𝑪𝑪𝑷𝑷𝑷𝑷𝑷𝑷 > 𝟔𝟔𝟎𝟎𝒅𝒅𝟓𝟓 Tb3
𝑷𝑷𝒍𝒍 > 𝟏𝟏𝛀𝛀 Tb4
𝑷𝑷𝑷𝑷 > 𝟐𝟐𝟎𝟎𝟎𝟎𝟐𝟐/𝝁𝝁𝝁𝝁 Tb5

• Design specifications: 

High demand



Experiment: Two-Stage Operational Amplifier

• Comparison
• Our algorithm find the best GAIN
• The wPESC+FEI+MM method can gain 2.71x speedup compared with WEIBO, while 

the most recent method MTBO proposed in 2021 just gains 1.14x speedup
• Both PESC and wPESC reasonably allocate more simulation points to Tb2, which is 

very difficult to reach its specifications



Experiment: Low-Power Amplifier

• 350nm CMOS process
• 11 Design variables
• 3 testbenches

𝐦𝐦𝐦𝐦𝐱𝐱𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦𝐦 𝑬𝑬𝑰𝑰 Tb1
𝐬𝐬. 𝐭𝐭. 𝑮𝑮𝑮𝑮𝑬𝑬𝑵𝑵 > 𝟏𝟏𝟏𝟏𝟎𝟎𝒅𝒅𝟓𝟓 Tb2

𝑷𝑷𝑷𝑷𝑷𝑷 > 𝟎𝟎.𝟏𝟏𝟏𝟏𝟐𝟐/𝝁𝝁𝝁𝝁
𝑷𝑷𝑷𝑷𝑭𝑭 > 𝟎𝟎.𝟐𝟐𝟐𝟐/𝝁𝝁𝝁𝝁 Tb3

• Design specifications: 

Loose constraints



Experiment: Low-Power Amplifier

• Comparison
• Our algorithm find the best IQ
• Our proposed method gains 3.89x speedup over WEIBO, while MTBO just gains 

1.52x speedup
• PESC method significantly reduces the number of simulation points wasted on Tb3



Thank you!
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