Common-Centroid Layout for Active and Passive Devices: A Review and the Road Ahead

Nibedita Karmokar†, Meghna Madhusudan†, Arvind K. Sharma†, Ramesh Harjani†, Mark Po-Hung Lin‡, Sachin S. Sapatnekar†

†University of Minnesota, USA‡National Yang Ming Chiao Tung University, Taiwan

ASPDAC 2022

Background

- Analog circuits
 - Often use large-sized devices/passives
 - Divided into unit structures laid out in an array
 - Sensitive to differential mismatch
 - Process variations are a major contributor

[Karmokar, DATE22]

Common C

Variation Models

- Die-to-die variations
- Within-die random variations ³ ³⁰
 - Uncorrelated
 - Spatially correlated
- Systematic variations
 - Gradient variations
 - Layout-dependent effects (LDEs)

(a) SA and SB parameters for LOD effect.

3

Common-Centroid Layout

• Set the centroid of unit cells of A to be the same as that of B

$$\frac{1}{s_A} \sum_{i=1}^{s_A} x_1^A = \frac{1}{s_B} \sum_{i=1}^{s_B} x_2^B$$

- Can be extended to more devices
- Cancels out systematic process gradients

$$\Delta P = \mathcal{S}_p \Delta p$$

$$\begin{aligned} \rho &= \alpha \cdot x \\ \Delta P &= \alpha \mathcal{S}_p \cdot x \end{aligned}$$

Common-centroid pattern

Trends in FinFET Technologies and Beyond

- High wire/via resistances
 Bends discouraged
- Unidirectional transistors
- Gridded, unidirectional wires
- "Unit cells" for transistors
- Self-heating/electromigration issues

[anandtech.com]

5

Capacitor Layout

• Systematic mismatch

Process gradients

$$M_{sys} = \max_{p,q \in \{1, \cdots, n\}, p \neq q} \left| \frac{\left(C_p^* / C_q^* \right) - \left(C_p / C_q \right)}{\left(C_p / C_q \right)} \right|$$

Random Mismatch

Correlation function

$$\rho_s(r) = (\rho_0)^r$$

• For
$$C_p = p C_u$$
, $C_q = q C_u$

$$\rho_{pq} = \frac{Cov(p,q)}{\sigma_p \sigma_q}$$

• Metrics

$$\rho_{avg} = \frac{1}{C(t,2)} \sum_{p=1}^{t-1} \sum_{q=p+1}^{t} \rho_{pq}$$

$$M_{rand} = \max_{p,q \in \{1, \cdots, n\}, p \neq q} var\left(\frac{C_p}{C_q}\right)$$

6	6	6		6		6		6	6	6
6	5	5		5		5		5	6	6
6	5	4		3		3		4	6	6
6	5	4		0		2		4	5	6
6	5	4		2		1		4	5	6
6	6	4		3	t	3		4	5	6
6	6	5	Ħ	5		5	Ħ	5	5	6
6	6	6	T	6		6	Ħ	6	6	6

[Karmokar, DATE22]

Circuit Performance Metrics

• Charge-sharing DAC

$$DNL_{i} = \frac{V_{OUT}(i+1) - V_{OUT}(i) - V_{LSB}}{V_{LSB}}, \forall i = 0, \dots, 2^{N-1}.$$
$$INL_{i} = \frac{V_{OUT}(i) - V_{OUT}^{ideal}(i)}{V_{LSB}}, \forall i = 0, \dots, 2^{N-1}.$$

CC Capacitor Layout Methods

- Heuristic
 - No guarantee of optimality (and sometimes correctness)
- ILP
 - Place unit capacitors and wires into "slots"

5656

- Structured methods
 - Chessboard layout

6

6 5

656

• Iterative methods

 Simulated annealing based perturbation of pair sequences with routability analysis

[Burcea, TCAD15]

656565

FinFET-based CC Capacitor Layouts

- High via counts lead to high resistance \rightarrow high RC delays \rightarrow low 3dB frequency
- Alternative layout styles that reduce via counts are preferred
 - Chessboard layouts achieve good dispersion, high via count
 - Block chessboard (BC) layouts achieve a good compromise

6	6	6	6	6	6	6	6	
6	5	5	5	5	5	6	6	
6	5	4	3	3	4	6	6	
6	5	4	0	2	4	5	6	
6	5	4	2	1	4	5	6	
6	6	4	3	3	4	5	6	
6	6	5	5	5	5	5	6	
6	6	6	6	6	6	6	6	

5	6	5	6	5	6	5	6
6	3	6	4	6	3	6	4
5	6	5	6	5	6	5	6
6	4	6	0	6	4	6	2
2	6	4	6	1	6	4	6
6	5	6	5	6	5	6	5
4	6	3	6	4	6	3	6
6	5	6	5	6	5	6	5

6	6	6	6	5	5	6	6
6	6	6	6	5	5	6	6
5	5	3	4	3	4	6	6
5	5	4	0	4	2	6	6
6	6	2	4	1	4	5	5
6	6	4	3	4	3	5	5
6	6	5	5	6	6	6	6
6	6	5	5	6	6	6	6
							2.0

(d) BC (finer)

Transistor Layout

• Layout-dependent effects (LDEs)

(a) SA and SB parameters for LOD effect.

(b) OD width and spacing, gate pitch, and well proximity effects.

$$\Delta V_{th} \propto \frac{1}{\text{LOD}} = \sum_{i=1}^{n} \left(\frac{1}{\text{SA}_i + 0.5L_g} + \frac{1}{\text{SB}_i + 0.5L_g} \right)$$

- Diffusion sharing
 - Diffusion breaks require spaces, can create asymmetries

Transistor CC placement to maximize diffusion sharing

CC Transistor Placement

Placement is followed by EM-aware/IR-drop-aware routing

[Sharma, ICCAD21]

When is CC Layout (Un)necessary?

CC is not beneficial when layout size $\ll R_L$

When is CC Layout (Un)necessary?

• LDEs affect the mean value: CC does not match LDEs

When is CC Layout (Un)necessary?

 $2I_{UA} - I_{UB} \quad 2I_{UA} - 2I_{UB} \quad 2I_{UA} - 2I_{UB} \quad I_{UA} - 2I_{UB}$

P3: Interdigitated

21_{UA}

IUA

[Sharma, DATE21]

-I_{UB}

-21_{UB}

Optimal Layouts May Differ from Block to Block

Conclusion

- CC layout is important in canceling systematic variations
- CC layout styles for transistor and passive arrays are widely used
- In FinFET technologies
 - Must be aware of correlation lengths
 - Must be aware of wire/via resistances
 - Avoid diffusion breaks
 - Consider alternatives to CC due to LDEs, wire parasitics, layout size

