
RADARS: Memory Efficient Reinforcement Learning

Aided Differentiable Neural Architecture Search

Presenter: Zheyu Yan,

Co-Authors: Weiwen Jiang, X. Sharon Hu, Yiyu Shi

1

Outline

2

• Motivation

• Intuition

• RADARS

• Experimental Results

Outline

3

• Motivation

• Intuition

• RADARS

• Experimental Results

Motivations: Limitation of NAS Variants (1)

4

• Neural architecture search
(NAS) is effective

• Reinforcement learning (RL)
based NAS is time consuming

• Differentiable NAS (DNAS) is
fast but memory hungry

Fig. 1 Memory consumption for different NAS
frameworks when mapped to DNAS scheme
vs available GPU memory over time.

Motivations: Limitation of NAS Variants (2)

5

• One-Shot DNAS e.g., ProxylessNAS [1]

• Activates only one path at each
iteration of training-search

• Reduces memory usage

• Still needs to store the whole
SuperNet in GPU memory or requires
frequent swapping

• RL-aided DNAS: higher flexibility

• Why is DNAS memory hungry?
The search space is large

[1] Cai, Han et al. "Proxylessnas: Direct neural architecture search on target task and hardware." ICLR (2019).

Fig. 2 Demonstration for One-Shot DNAS

Outline

6

• Motivation

• Intuition

• RADARS

• Experimental Results

Intuitions: Redundant Search Space (1)

7

• Why is DNAS memory hungry?
The search space is large

• Designers tend to offer the same
search space (e.g., kernel size, # of
channels, quantization precision) for
different layers

• Different layers have different
properties and require different
hyperparameter sets

Fig. 3 Uniform search space for different layers

Intuitions: Redundant Search Space (2)

8

• Different layers have different
properties and require different
hyperparameter sets

• Some parameters are only more
sensitive to position

• The early episodes of RL-NAS is a
good approach to identify these
differences

Fig. 4 Unique search space for different layers

Outline

9

• Motivation

• Intuition

• RADARS

• Experimental Results

RADARS: Pruning Search Space via RL

10

Goal: find a subset of the original
search space that:

• Contains a solution that satisfy
the performance requirement

• Fits in the memory usage
constraint

Use this subset to find the optimal
solution

Fig. 5 RADARS workflow

RADARS: Pruning Search Space via RL

11

1. Initialize a uniform search space (S)

2. RL finds a set of architectures

3. Choose the top P of them

4. Merge top P candidates to the
subset of S

5. DNAS [2] on this subset

6. Iterate the previous 5 steps if
accuracy not high enough

Fig. 5 RADARS workflow

[2] Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." CVPR (2019).

RADARS: RL Exploration (1)

12

Adopting existing RL NAS frameworks

• Controller: reinforcement learning-based RNN controller. In
each episode:

• Generates one neural architecture

• Receives a reward to generate better architectures

• Trainer: trains a neural architecture generated by controller

• Evaluator: evaluates the accuracy and hardware efficiency of
a neural architecture and provide a reward

RADARS: DNAS Exploitation (1)

13

For the K sorted architectures

• Add one architecture to DNAS
search space

• Build a DNAS model using the
new search space

• Evaluate the memory
consumption of this model

• If exceeds the memory bound,
break and remove the newly
added architecture

1. Initialize a uniform search space
(S)

2. RL finds a set of architectures

3. Choose the top P of them

4. Merge top P candidates to
create a subset of S

5. DNAS on this subset

6. Iterate the previous 5 steps if
accuracy not high enough

RADARS: DNAS Exploitation (2)

14

For each layer:

• Put candidates in each
architecture into the
search space

• Remove the duplicated
candidates

Fig. 6 Demonstration of merging a set of architectures
to a DNAS search space

Outline

15

• Motivation

• Intuition

• RADARS

• Experimental Results

Experiments: Evaluation Metrics

16

Normalized arithmetic intensity

• Similar to FLOPS, not a good metric for latency

• Targeting accurate energy consumption analysis

AOPS = MACOPS ×Activation bits ×Weight bits

Reward = α ×Acc + (1 −α) ×(1 −(AOPS −β)/γ)

Experiments: CIFAR-10 (1)

17

• Search quantized CNN for CIFAR-10

• Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]

• Search space shown below

[3] Qing Lu et al, “On neural architecture search for resource-constrained hardware platforms,” ICCAD, 2019.

Experiments: CIFAR-10 (2)

18

• RADARS gets 3.41% lower test error and 39% lower
arithmetic intensity, with 2.5× search time reduction than RL

• DNAS takes 10x more memory

• One-Shot takes 26x more time

Experiments: CIFAR-10 (3)

19

• Each point represents an
architecture

• A solution is better as it moves
towards the bottom-left corner

• RADARS can significantly push
forward the Pareto frontier

Fig. 7 Performance of RADARS and QuantNAS.
Each point represents an architecture

Experiments: ImageNet (1)

20

• Search MobileNet for ImageNet

• Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]

• Search space shown below

Experiments: ImageNet (2)

21

• RADARS achieves 1.4% higher top-1 accuracy than QuantNAS
using only 54% of the search time than RL

• DNAS takes 5x more memory

• One-Shot takes 10x more time

Experiments: SOTA on ImageNet

22

• Handcrafted models and NAS models with different search spaces

• RADARS achieves comparable performances

Conclusions

23

• We propose RADARS, an RL-aided DNAS framework

• RADARS explores large hardware-aware neural
network search spaces in a memory efficient manner

• Experiments on CIFAR-10 and ImageNet demonstrate
the superiority of RADARS over the state-of-the-art.

References

24

Thanks & Questions

25

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25

