RADARS: Memory Efficient Reinforcement Learning Aided Differentiable Neural Architecture Search

Presenter: Zheyu Yan, Co-Authors: Weiwen Jiang, X. Sharon Hu, Yiyu Shi

- Motivation
- Intuition
- RADARS
- Experimental Results

• Motivation

- Intuition
- RADARS
- Experimental Results

Motivations: Limitation of NAS Variants (1)

- Neural architecture search (NAS) is effective
- Reinforcement learning (RL) based NAS is time consuming
- Differentiable NAS (DNAS) is fast but memory hungry

Fig. 1 Memory consumption for different NAS frameworks when mapped to DNAS scheme vs available GPU memory over time.

Motivations: Limitation of NAS Variants (2)

- One-Shot DNAS e.g., ProxylessNAS [1]
 - Activates only one path at each iteration of training-search
 - Reduces memory usage
 - Still needs to store the whole SuperNet in GPU memory or requires frequent swapping
- RL-aided DNAS: higher flexibility
- Why is DNAS memory hungry? The search space is large

Fig. 2 Demonstration for One-Shot DNAS

- Motivation
- Intuition
- RADARS
- Experimental Results

Intuitions: Redundant Search Space (1)

- Why is DNAS memory hungry? The **search space** is large
- Designers tend to offer the same search space (e.g., kernel size, # of channels, quantization precision) for different layers
- Different layers have different properties and require different hyperparameter sets

Fig. 3 Uniform search space for different layers

Intuitions: Redundant Search Space (2)

- Different layers have different properties and require different hyperparameter sets
- Some parameters are only more sensitive to position
- The early episodes of RL-NAS is a good approach to identify these differences

Fig. 4 Unique search space for different layers

- Motivation
- Intuition
- **RADARS**
- Experimental Results

RADARS: Pruning Search Space via RL

Goal: find a **subset of the original search space** that:

- Contains a solution that satisfy the performance requirement
- Fits in the **memory usage** constraint

Use this subset to find the optimal solution

RADARS: Pruning Search Space via RL

- 1. Initialize a uniform search space (S)
- 2. RL finds a set of architectures
- 3. Choose the top P of them
- 4. Merge top P candidates to the subset of S
- 5. DNAS [2] on this subset
- 6. Iterate the previous 5 steps if accuracy not high enough

[2] Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." CVPR (2019).

RADARS: RL Exploration (1)

Adopting existing RL NAS frameworks

- Controller: reinforcement learning-based RNN controller. In each episode:
 - Generates one neural architecture
 - Receives a *reward* to generate better architectures
- **Trainer:** trains a neural architecture generated by controller
- Evaluator: evaluates the accuracy and hardware efficiency of a neural architecture and provide a *reward*

RADARS: DNAS Exploitation (1)

- Initialize a uniform search space (S)
- 2. RL finds a set of architectures
- 3. Choose the top P of them
- 4. Merge top P candidates to create a subset of S
- 5. DNAS on this subset
- 6. Iterate the previous 5 steps if accuracy not high enough

For the K sorted architectures

- Add one architecture to DNAS search space
- Build a DNAS model using the new search space
- Evaluate the memory consumption of this model
- If exceeds the memory bound, break and remove the newly added architecture

RADARS: DNAS Exploitation (2)

For each layer:

- Put candidates in each architecture into the search space
- Remove the duplicated candidates

Fig. 6 Demonstration of merging a set of architectures to a DNAS search space

- Motivation
- Intuition
- RADARS
- Experimental Results

Experiments: Evaluation Metrics

Normalized arithmetic intensity

- Similar to FLOPS, not a good metric for latency
- Targeting accurate energy consumption analysis AOPS = MACOPS ×Activation bits ×Weight bits Reward = α ×Acc + (1 – α) ×(1 –(AOPS – β)/ γ)

Experiments: CIFAR-10 (1)

- Search quantized CNN for CIFAR-10
- Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]
- Search space shown below

Hyper-Parameter type	Settings
Block type # of convolution layers # of channels per layer Stride	Quantized Convolution 6 [64, 64, 128, 128, 256, 256] [1, 2, 1, 2, 1, 2]
Kernel size choices # of integer bits choices # of fraction bits choices	$egin{array}{cccccccccccccccccccccccccccccccccccc$

Experiments: CIFAR-10 (2)

- RADARS gets 3.41% lower test error and 39% lower arithmetic intensity, with 2.5× search time reduction than RL
- DNAS takes 10x more memory
- One-Shot takes 26x more time

Model	Top-1 (%)	AOPS (G)	Time (h)	Memory (GB)
QuantNAS [6]	84.92	4.09	22.9	1.430
One-Shot $[5]$	OOT	OOT	>240	1.537
DNAS $[4]$	OOM	OOM	OOM	112.0
RADARS (ours)	88.33	2.50	9.15	10.43

Experiments: CIFAR-10 (3)

- Each point represents an architecture
- A solution is better as it moves towards the bottom-left corner
- RADARS can significantly push forward the Pareto frontier

Fig. 7 Performance of RADARS and QuantNAS. Each point represents an architecture

Experiments: ImageNet (1)

- Search MobileNet for ImageNet
- Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]
- Search space shown below

Hyper-Parameter type	Settings
Block type	Mobile Invtd Res Block
# of blocks	6
# of channels per block	[24, 40, 80, 96, 192, 320]
# of cells per block	[4,4,4,4,4,1]
Stride	[2,2,2,1,2,1]
Kernel size choices	(3, 5, 7)
# of convolution groups	(3, 6)

Experiments: ImageNet (2)

- RADARS achieves 1.4% higher top-1 accuracy than QuantNAS using only 54% of the search time than RL
- DNAS takes 5x more memory
- One-Shot takes 10x more time

Model	Top-1 (%)	Top-5 (%)	AOPS (G)	Time (h)	Mem (GB)
QuantNAS [6]	72.4	90.4	0.409	138	6.73
One-Shot $[5]$	OOT	OOT	OOT	>740	7.01
DNAS $[4]$	OOM	OOM	OOM	OOM	58.2
RADARS	73.8	91.5	0.386	$\overline{74}$	11.0

Experiments: SOTA on ImageNet

- Handcrafted models and NAS models with different search spaces
- RADARS achieves comparable performances

Type	Model	Top-1 (%)	$\begin{array}{c} \text{Top-5} \\ (\%) \end{array}$	AOPS (G)
Hand	ResNet-34 [19] CondenseNet [20]	$73.3 \\ 73.8$	$\begin{array}{c} 91.4\\ 91.7\end{array}$	$3.600 \\ 0.529$
crafted	MobileNet V2 $[16]$	72.0	91.0	0.300
NAS	NASNet-A [18] PNASNET-5 [17]	74.0 74.2 75.1	91.6 91.9	$0.564 \\ 0.588 \\ 0.465$
identified	Proxyless-GPU[3]	75.1	92.5	0.465
Proposed	RADARS (ours)	73.8	91.5	0.386

Conclusions

- We propose RADARS, an RL-aided DNAS framework
- RADARS explores large hardware-aware neural network search spaces in a memory efficient manner
- Experiments on CIFAR-10 and ImageNet demonstrate the superiority of RADARS over the state-of-the-art.

References

- B. Zoph and Q. V. Le, "Neural architecture search with reinforcement learning," arXiv preprint arXiv:1611.01578, 2016.
- [2] H. Liu, K. Simonyan, and Y. Yang, "Darts: Differentiable architecture search," in *ICLR*, 2018.
- [3] H. Cai, L. Zhu, and S. Han, "Proxylessnas: Direct neural architecture search on target task and hardware," in *ICLR*, 2018.
- [4] Y. Li, C. Hao, X. Zhang, X. Liu, Y. Chen, J. Xiong, W.-m. Hwu, and D. Chen, "Edd: Efficient differentiable dnn architecture and implementation co-search for embedded ai solutions," *DAC*, 2020.
- [5] X. Dong and Y. Yang, "One-shot neural architecture search via self-evaluated template network," in *ICCV*, 2019, pp. 3681–3690.
- [6] Q. Lu, W. Jiang, X. Xu, Y. Shi, and J. Hu, "On neural architecture search for resource-constrained hardware platforms," *IC-CAD*, 2019.
- [7] W. Jiang, X. Zhang, E. H.-M. Sha, L. Yang, Q. Zhuge, Y. Shi, and J. Hu, "Accuracy vs. efficiency: Achieving both through fpgaimplementation aware neural architecture search," in *DAC*, 2019, pp. 1–6.
- [8] W. t. Jiang, "Hardware/software co-exploration of neural architectures," TCAD, vol. 39, no. 12, pp. 4805–4815, 2020.
- [9] W. Jiang, Q. Lou, Z. Yan, L. Yang, J. Hu, X. S. Hu, and Y. Shi, "Device-circuit-architecture co-exploration for computingin-memory neural accelerators," *IEEE Transactions on Comput*ers, vol. 70, no. 4, pp. 595–605, 2020.
- [10] L. t. Yang, "Co-exploration of neural architectures and heterogeneous asic accelerator designs targeting multiple tasks," in *DAC*. IEEE, 2020, pp. 1–6.

- [11] Z. Yan, D.-C. Juan, X. S. Hu, and Y. Shi, "Uncertainty modeling of emerging device based computing-in-memory neural accelerators with application to neural architecture search," in 2021 26th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2021, pp. 859–864.
- [12] A. Vahdat, A. Mallya, M.-Y. Liu, and J. Kautz, "Unas: Differentiable architecture search meets reinforcement learning," in *CVPR*, 2020, pp. 11266–11275.
- [13] Y. Zhao, L. Wang, Y. Tian, R. Fonseca, and T. Guo, "Few-shot neural architecture search," in *ICML*. PMLR, 2021, pp. 12707– 12718.
- [14] A. Krizhevsky, G. Hinton *et al.*, "Learning multiple layers of features from tiny images," 2009.
- [15] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, "Imagenet: A large-scale hierarchical image database," in *CVPR*. Ieee, 2009, pp. 248–255.
- [16] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and L.-C. Chen, "Mobilenetv2: Inverted residuals and linear bottlenecks," in *CVPR*, 2018, pp. 4510–4520.
- [17] C. Liu, B. Zoph, M. Neumann, J. Shlens, W. Hua, L.-J. Li, L. Fei-Fei, A. Yuille, J. Huang, and K. Murphy, "Progressive neural architecture search," in *ECCV*, 2018, pp. 19–34.
- [18] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, "Learning transferable architectures for scalable image recognition," in *Proceed*ings of the IEEE conference on computer vision and pattern recognition, 2018, pp. 8697–8710.
- [19] K. He, X. Zhang, S. Ren, and J. Sun, "Deep residual learning for image recognition," in CVPR, 2016, pp. 770–778.
- [20] G. Huang, S. Liu, L. Van der Maaten, and K. Q. Weinberger, "Condensenet: An efficient densenet using learned group convolutions," in *CVPR*, 2018, pp. 2752–2761.

Thanks & Questions