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Motivations: Limitation of NAS Variants (1)
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• Neural architecture search 
(NAS) is effective

• Reinforcement learning (RL) 
based NAS is time consuming

• Differentiable NAS (DNAS) is 
fast but memory hungry

Fig. 1 Memory consumption for different NAS
frameworks when mapped to DNAS scheme
vs available GPU memory over time.



Motivations: Limitation of NAS Variants (2)
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• One-Shot DNAS e.g., ProxylessNAS [1]

• Activates only one path at each 
iteration of training-search

• Reduces memory usage

• Still needs to store the whole 
SuperNet in GPU memory or requires 
frequent swapping

• RL-aided DNAS: higher flexibility

• Why is DNAS memory hungry?
The search space is large

[1] Cai, Han et al. "Proxylessnas: Direct neural architecture search on target task and hardware." ICLR (2019).

Fig. 2 Demonstration for One-Shot DNAS
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Intuitions: Redundant Search Space (1)
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• Why is DNAS memory hungry?
The search space is large

• Designers tend to offer the same 
search space (e.g., kernel size, # of 
channels, quantization precision) for 
different layers

• Different layers have different 
properties and require different 
hyperparameter sets 

Fig. 3 Uniform search space for different layers



Intuitions: Redundant Search Space (2)
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• Different layers have different 
properties and require different 
hyperparameter sets

• Some parameters are only more 
sensitive to position

• The early episodes of RL-NAS is a 
good approach to identify these 
differences

Fig. 4 Unique search space for different layers
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RADARS: Pruning Search Space via RL
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Goal: find a subset of the original 
search space that:

• Contains a solution that satisfy 
the performance requirement

• Fits in the memory usage 
constraint

Use this subset to find the optimal 
solution

Fig. 5 RADARS workflow



RADARS: Pruning Search Space via RL
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1. Initialize a uniform search space (S)

2. RL finds a set of architectures

3. Choose the top P of them

4. Merge top P candidates to the 
subset of S

5. DNAS [2] on this subset 

6. Iterate the previous 5 steps if 
accuracy not high enough

Fig. 5 RADARS workflow

[2] Wu, Bichen, et al. "Fbnet: Hardware-aware efficient convnet design via differentiable neural architecture search." CVPR (2019).



RADARS: RL Exploration (1)
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Adopting existing RL NAS frameworks

• Controller: reinforcement learning-based RNN controller. In 
each episode:

• Generates one neural architecture

• Receives a reward to generate better architectures

• Trainer:  trains a neural architecture generated by controller 

• Evaluator: evaluates the accuracy and hardware efficiency of 
a neural architecture and provide a reward



RADARS: DNAS Exploitation (1)
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For the K sorted architectures

• Add one architecture to DNAS 
search space

• Build a DNAS model using the 
new search space

• Evaluate the memory 
consumption of this model

• If exceeds the memory bound, 
break and remove the newly 
added architecture

1. Initialize a uniform search space 
(S)

2. RL finds a set of architectures

3. Choose the top P of them

4. Merge top P candidates to 
create a subset of S

5. DNAS on this subset 

6. Iterate the previous 5 steps if 
accuracy not high enough



RADARS: DNAS Exploitation (2)
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For each layer:

• Put candidates in each 
architecture into the 
search space

• Remove the duplicated 
candidates

Fig. 6 Demonstration of merging a set of architectures 
to a DNAS search space 
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Experiments: Evaluation Metrics
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Normalized arithmetic intensity

• Similar to FLOPS, not a good metric for latency

• Targeting accurate energy consumption analysis

AOPS = MACOPS ×Activation bits ×Weight bits

Reward = α ×Acc + (1 −α) ×(1 −(AOPS −β)/γ)



Experiments: CIFAR-10 (1)
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• Search quantized CNN for CIFAR-10

• Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]

• Search space shown below

[3] Qing Lu et al, “On neural architecture search for resource-constrained hardware platforms,” ICCAD, 2019.



Experiments: CIFAR-10 (2)
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• RADARS gets 3.41% lower test error and 39% lower 
arithmetic intensity, with 2.5× search time reduction than RL

• DNAS takes 10x more memory

• One-Shot takes 26x more time



Experiments: CIFAR-10 (3)
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• Each point represents an 
architecture

• A solution is better as it moves 
towards the bottom-left corner

• RADARS can significantly push 
forward the Pareto frontier 

Fig. 7 Performance of RADARS and QuantNAS. 
Each point represents an architecture



Experiments: ImageNet (1)
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• Search MobileNet for ImageNet

• Baselines: quantNAS (RL) [3], One-Shot [1], DNAS [2]

• Search space shown below



Experiments: ImageNet (2)
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• RADARS achieves 1.4% higher top-1 accuracy than QuantNAS
using only 54% of the search time than RL

• DNAS takes 5x more memory

• One-Shot takes 10x more time



Experiments: SOTA on ImageNet 
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• Handcrafted models and NAS models with different search spaces

• RADARS achieves comparable performances



Conclusions
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• We propose RADARS, an RL-aided DNAS framework

• RADARS explores large hardware-aware neural 
network search spaces in a memory efficient manner

• Experiments on CIFAR-10 and ImageNet demonstrate 
the superiority of RADARS over the state-of-the-art.
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