A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression

Etienne Dupuis, Ian O'Connor, David Novo, Alberto Bosio **ASP-DAC** -2022

ADEQUATE DL

Outline

- I. Computer vision in embedded devices
- II. Approximate computing in CNNs
- III. Weight sharing principles and challenges
- IV. Divide & conquer strategy
- V. ImageNet results
- VI. Conclusions

Computer vision in embedded devices

Computer Vision

Autonomous Driving

Quality Monitoring

Predictive Maintenance

Convolutional Neural Networks

Execution cost

High Resolution Image

Low Resolution Image

Bianco & Al, IEEE Access, 2018

CNN in Embedded Devices

Approximate computing in CNNs

Approximate computing

Error resilient applications

Many applications are **error resilient** [1]

CNN resilience factors

Empirical Training

• Algorithm level noise tolerance

High Level of Redundancy

- Layer Connections
- Weights Values
- Values Encoding

Approximate Computing Techniques for CNNs

Weight sharing principles and challenges

Weight Sharing

- Group weights values together
- Store a single **shared value** per group
- Use smaller **index** in weight matrix

 $Compression Rate = \frac{Baseline \ Model \ Memory}{Compressed \ Model \ Memory} = \frac{W * B}{W * ceil(\log_2 K) + K * B}$ Number of weights (W), number of clusters (K), bit used to represent a weight (B)

Compression rate (CR) =
$$\frac{25 * 32}{25 * ceil(\log_2 5) + 5 * 32} = \frac{800}{235} = 3.4$$

Where we Have Been in Weight Sharing

Random grouping Hashed Net[1]

Iterative grouping/training Deep Compression[2]

Regularized training Deep K-means[3] Soft Weight Sharing [4]

LUT multiplication LookNN[5] QuantizedNN[6]

[1] Chen & al. CoRR, 2015[2] Han & al. ICLR, 2016[3] Wu & al. ICML, 2018[4] Ullrich & al. ICLR, 2017[5] Razlighi & al. DATE, 2017[6] Hubara & al. CoRR, 2016

Retraining Issues

Layer sensitivity to approximation

ResNet50V2, first layer

Research Question

Find the optimal number of shared values for each layer of a CNN

Search space issue

100 possible number of shared values 5 layers (Lenet) => 10 billions possible combinations

Divide & conquer strategy

Proposed Framework

20/42

Two-Steps Approach

Layer Optimization

Network Optimization

Solution space reduction

Heuristic optimization

Layer Optimization Method

Layer Optimization Layer Optimization Example

a 0

b 5

Layer

Optimization

ResNet50V2, first layer

Layer Optimization Example

Network Optimization

Network optimization

Network Optimization

Network optimization

Linear Regression

Avoid the cost of combination evaluation

Regression Training Data

- 1. Random sub-sampling the search space
- 2. Apply each approximations
- 3. Evaluate each candidates
- 4. Train the regression model

Regression Training Data

5K samples over the 10⁵⁴ possible combinations

Resnet₅₀V₂, Linear regression model $R^2 = 76\%$

Pareto Improvement

- NSGA-II Genetic Algorithm [1]
- Using the regression model

Population Evaluation

Breeding + Mutation

Non-Dominated Selection

(Exploitation/Exploration)

1.

2

3.

F2 (x) Non-dominated particle Dominated particle Pareto Front F1 (x)

Pareto Improvement

Resnet50V2, Linear regression model R² = 76%, NSGA-II iteration = 500

Conceptual View

Weight Matrix => Index Matrix + Weights Codebook

A Heuristic Exploration of Retraining-free Weight-Sharing for CNN Compression

ImageNet results

Experimental Setup

- Imagenet Dataset (1m high-res images / 50k validation set)
- Tensorflow / Pytorch
- On-premise GPU Server (single NVIDIA Tesla V100 32GB)

Various Imagenet CNNs

ImageNet Results

Network	MLPerf category	#Layer	Mem. [MB]	top-1 Acc. [%]	CR min, max
GoogleNet	heavy	58	50	69.7	5.4
ResNet50V2	heavy	54	97	76.0	5.3, 5.6
InceptionV3	heavy	2.8	104	77.2	4.7, 5.3
MobileNetV2	light	53	13	71.9	4.4, 5.7
EfficientNetB0	light	82	20	76.4	4.5, 5.6
EfficientNetB1	light	116	30	78.4	4.3, 5.3
EfficientNetB2	light	116	35	79.8	3.5, 5.3

- Up to 5x compression
- Both Heavy & light MLPERF categories
- 4h-16h exploration time (depends on #layer)

Method	Retraining-Free	CR	Top-1 AL (%)
Deep K-means(2018) [18]	Yes	1.5	1.22
	Yes	2	3.7
	Yes	3	13.72
	Yes	4	48.95
	No	1.5	0.26
	No	2	0.17
	No	3	0.36
	No	4	1.95
DB Not (2020) [20]	No	7	-0.3
DP-Net (2020) [20]	No	10	1.56
FastWS [25]	Yes	4.55	0.83
This Work	Yes	5.44	0.35

• Both Deep K-means and DP-Net involves complex retraining

Method	Retraining-Free	CR	Top-1 AL (%)
Deep K-means(2018) [18]	Yes	1.5	1.22
	Yes	2	3.7
	Yes	3	13.72
	Yes	4	48.95
	No	1.5	0.26
	No	2	0.17
	No	3	0.36
	No	4	1.95
DB Not (2020) [20]	No	7	-0.3
DP-Net (2020) [20]	No	10	1.56
FastWS [25]	Yes	4.55	0.83
This Work	Yes	5.44	0.35

- Both Deep K-means and DP-NET involves complex retraining
- This work Pareto dominate the retraining free Deep K-means

Method	Retraining-Free	CR	Top-1 AL (%)
Deep K-means(2018) [18]	Yes	1.5	1.22
	Yes	2	3.7
	Yes	3	13.72
	Yes	4	48.95
	No	1.5	0.26
	No	2	0.17
	No	3	0.36
	No	4	1.95
DD Not (2020) [20]	No	7	-0.3
DP-Net (2020) [20]	No	10	1.56
FastWS [25]	Yes	4.55	0.83
This Work	Yes	5.44	0.35

- Both Deep K-means and DP-NET involves complex retraining
- This work Pareto dominates Deep K-means

Method	Retraining-Free	CR	Top-1 AL (%)
	Yes	1.5	1.22
	Yes	2	3.7
	Yes	3	13.72
Deer V	Yes	4	48.95
Deep K-means(2018) [18]	No	1.5	0.26
	No	2	0.17
	No	3	0.36
	No	4	1.95
DD Not (2020) [20]	No	7	-0.3
DP-Net (2020) [20]	No	10	1.56
FastWS [25]	Yes	4.55	0.83
This Work	Yes	5.44	0.35

- Both Deep K-means and DP-NET involves complex retraining
- This work Pareto dominate Deep K-means
- Competitive results with DP-Net:
 - DP-Net best case estimated at ~3oh (30 epochs x >1h)
 - This work: **5h2o (~5.8x faster)**

[18] Wu & al. ICML, 2018 [20] Yang & al. ASPDAC, 2021

Comparison with Post-Training Pruning

- PTP: data-free pruning relying on fractal images
- Competitive if not Pareto dominating results

Conclusion

Take Home

- Compression tuning allow for similar results without involving retraining
- The proposed compression method performs well on most CNNs
- Over 5x compression rate can be achieved without involving any retraining

e-dupuis/retraining-free-weight-sharing

Next Steps

- Investigate the introduction of the proposed Weight sharing optimization into full compression pipeline
- Analyse different CNNs topologies resilience to weight sharing
- Investigate the use of **calibration**
- Investigate a channel-wise weight sharing level

Authors & Funding

Etienne Dupuis INL <u>etienne.dupuis@ec-lyon.fr</u>

lan O'Connor INL

David Novo LIRMM, CNRS

Alberto Bosio INL

ANR AdequatedDL (ANR-18-CE23-0012)

Thank you for listening

