HiKonv: High Throughput Quantized Convolution With Novel Bit-wise Management and Computation

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen

TILLINOIS Electrical & Computer Engineering GRAINGER COLLEGE OF ENGINEERING

Bio of the team

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen

University of Illinois at Urbana-Champaign Advanced Digital Sciences Center, Singapore University at Buffalo

Outline

- Introduction
- Preliminary
 - 1D Convolution
- HiKonv: Multiplication for Convolution
 - Basic idea
 - Detailed bit management
 - DNN extension
- Evaluation

Introduction

- DNN quantization
 - Low-bitwidth data (e.g., 4bit or even less)
- Common hardware computation unit
 - FPGA: DSPs
 - CPU: ALUs
 - Supports large bitwidth arithmetic (16bit & above)
 - Computation wastage for low bitwidth operands
- Previous work for multiple low bitwidth computation
 - FPGA: INT4 Optimization, INT8 Optimization
 - CPU: AVX based solution for 8bit
- Our contributions:
 - Generalize the solution for all valid quantization bitwidths, ranging from 1 bit to 8 bits
 - Provide theoretical foundation for achieving the maximal possible throughput

Preliminary: 1D-Convolution

- The conventional 1-D discrete convolution between an *N*-element sequence f and a *K*-element kernel g (denoted as $y = F_{N,K}(f,g)$)
 - All the values are zero when indices smaller than zero or bigger than the length of the sequences

$$y[m] = (f * g)[m] = \sum_{k=0}^{K-1} f[m-k]g[k]$$

• Alternative representation (replacing m - k with n)

$$y[m] = \sum_{k+n=m} f[n]g[k]$$

• *y* contains N + K - 1 non-zero elements

Multiplier for Convolution: 1-D Convolution

- Idea: The product of high bit-width integer multiplication can be used to perform multiple low bit-width 1D convolution operations simultaneously with proper bit management of multiplicands.
 - $-P = A \times B$
 - $y=[f[0]g[0], f[0]g[1]+f[1]g[0], f[0]g[2]+f[1]g[1]+f[2]g[0] \dots]$

Multiplier for Convolution: low bit-width 1-D Convolution

- Multiplication: $P = A \times B$
- Input multiplicands:
 - Formularization:

$$A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}, B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$$

- Output product:
 - Formularization:

$$P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$$

$$P = A \times B = \left(\sum_{n=0}^{N-1} f[n] 2^{Sn}\right) \cdot \left(\sum_{k=0}^{K-1} g[k] 2^{Sk}\right)$$
$$= \sum_{m=0}^{N+K-2} \left(\sum_{n+k=m} (f[n] \cdot 2^{Sn} \cdot g[k] \cdot 2^{Sk})\right)$$
$$= \sum_{m=0}^{N+K-2} \left(\sum_{n+k=m} (f[n]g[k]) \cdot 2^{Sm}\right)$$
$$= \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$$

Multiplier for Convolution: Bitwidth Constraints

- Choice of *S*
 - S-bit segment should be large enough to contain each y element
 - Guard bit G_b prevents overflow from accumulation
 - $G_b = \lceil \log_2 \min(K, N) \rceil$
- Bit width constraints:
 - The packed bit width cannot exceed the multiplicands bitwidth
 - $-Bit_A$ and Bit_B : bitwidth of multiplicand A and B

$$S = \begin{cases} q + G_b, & p = 1, q \ge 1\\ p + G_b, & q = 1, p \ge 1\\ p + q + G_b, & otherwise \end{cases}$$
$$y[m] = \sum_{k+n=m} f[n]g[k]$$
$$\begin{cases} p + (N-1)S \le Bit_A\\ q + (K-1)S \le Bit_B \end{cases}$$

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - P[S(m+1)-1:Sm] = y[m]

A = f	$A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$						
p bits		S bits	S bits			5 bits	
f[3]				0			
0		f[2]			0		
	(0		f[1]		0	
		0				f[0]	
f[3]		f[2]		f[1]		f[0]	
A[3S+p-1:3S]	A[3	35-1:25]	A	[2S-1:S]	¢	\[S-1:0]	

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing-
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - y[m] = P[S(m+1)-1:Sm]
 - Signed f and g:

$A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$						
p bits		S bits	9	5 bits	2	S bits
					1	
f[3]				0		
MSBs		f[2]			0	
	M	SBs	- - - - -	f[1]		0
		MSBs				f[0]
			 			f[0]
			 		ŀ	A[S-1:0]

A[S-1:0]=f[0]

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing-
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - y[m] = P[S(m+1)-1:Sm]
 - Signed f and g:

 $A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$

p bits		S bits	9	S bits	5	S bits
					Ì	
f[3]				0		
MSBs		f[2]	φ.			
	MS	SBs		f[1]		0
		0				f[0]
				f[1]		f[0]
			A	[2S-1:S]	ļ	A[S-1:0]

f[0]>=0 A[2S-1:S]=f[1]

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing-
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - y[m] = P[S(m+1)-1:Sm]
 - Signed f and g:

 $A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$

p bits	S bits		S bits		S bits	
f[3]			0			
MSBs		f[2]		(
	MS	SBs		f[1]		0
11111111	111111	1111111111111	11111	1111111111	.11	f[0]
				f[1]-1		f[0]
			A[2S-1:S]		A	A[S-1:0]

f[0]>=0 A[2S-1:S]=f[1]

f[0] < 0 A[2S-1:S]=f[1]₂+1111...111₂=f[1]-1

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing-
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - y[m] = P[S(m+1)-1:Sm]
 - Signed f and g:

•
$$A[S(n+1)-1:Sn] = \begin{cases} f[0], n = 0\\ f[n] - A[Sn-1], n > 0 \end{cases}$$

• $B[S(k+1)-1:S] = \begin{cases} g[0], k = 0\\ g[k] - B[Sk-1], k > 0 \end{cases}$

$$A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$$

p bits		S bits	S bits		S bits	
f[3]				0		
MSBs		f[2]			0	
	MS	SBs	- - - - - - - -	f[1]		0
		MSBs				f[0]
f[3]-A[3S-1]	f[2]-A[2S-1]	f[1	l]-A[S-1]		f[0]
A[3S+p-1:3S]	A[3S-1:2S]		A[2S-1:S]		ļ	A[S-1:0]

- Multiplication for convolution
 - Input Packing: $A = \sum_{n=0}^{N-1} f[n] \cdot 2^{Sn}$, $B = \sum_{k=0}^{K-1} g[k] \cdot 2^{Sk}$
 - Output Slicing: $P = \sum_{m=0}^{N+K-2} y[m] \cdot 2^{Sm}$
- Efficient packing and slicing-
 - Unsigned f and g:
 - A[S(n+1)-1:Sn] = f[n]
 - B[S(k+1)-1:Sk] = g[k]
 - y[m] = P[S(m+1)-1:Sm]
 - Signed f and g:

•
$$A[S(n+1)-1:Sn] = \begin{cases} f[0], n = 0\\ f[n] - A[Sn-1], n > 0 \end{cases}$$

• $B[S(k+1)-1:Sk] = \begin{cases} g[0], k = 0\\ g[k] - B[Sk-1], k > 0 \end{cases}$
• $y[m] = \begin{cases} P[S-1:0], m = 0\\ P[S(m+1)-1:Sm] + P[Sm-1], m > 0 \end{cases}$

$$y[m] = \{P[S(m+1)-1:Sm] + P[Sm-1], m >$$

$$A = f[3] \cdot 2^{3S} + f[2] \cdot 2^{2S} + f[1] \cdot 2^{S} + f[0]$$

p bits		S bits	S bits		:	S bits
f[3]				0		
MSBs		f[2]		Q		
	MS	SBs		f[1]		0
		MSB				f[0]
f[3]-A[3S-1]	f[2]-A[2S-1]	f[1]-A[S-1]		f[0]
A[3S+p-1:3S]	A[3S-1:2S]		A[2S-1:S]		ļ	A[S-1:0]
$P[S(m+1)-1:Sm] = \begin{cases} y[0], m = 0\\ y[m] - P[Sm-1], m > 0 \end{cases}$ $P[S-1:0], m = 0$						
$y[m] = \begin{cases} P[S-1:0], m = 0\\ P[S(m+1)-1:Sm] + P[Sm-1], m > 0 \end{cases}$						

ECE ILLINOIS 14

1D Convolution Extension: Split and Accumulation

Idea:

- Partition the original sequence into multiple subsequences
- Compute 1D convolution for each subsequence
- Accumulate the subsequence results to produce the final convolution solution
- Example:
 - 4-element sequence *f* and 3-element sequence
 - g
 - $\ f \to f_{0,1} | f_{2,3}$
 - $y_0 = F_{2,3}(f_{0,1},g), y_1 = F_{2,3}(f_{2,3},g)$
 - $y = F_{4,3}(f, g)$ can be composed based on the elements in y_0 and y_1

		y ₀ [3]	y ₀ [2]	y ₀ [1]	y ₀ [0]		
y ₁ [3]	y ₁ [2]	y ₁ [1]	y ₁ [0]]			
		f[3]g[0]	f[2]g[0]	f[1]g[0]	f[0]g[0]		
	f[3]g[1]	f[2]g[1]	f[1]g[1]	f[0]g[1]			
f[3]g[2]	f[2]g[2]	f[1]g[2]	f[0]g[2]		I		
y[5]	y[4]	y[3]	y[2]	y [1]	y[0]		
$y = F_{N,K}(f,g)$							

1D Convolution Extension: Theorem to Generalize the Technique

- **Theorem**: Given and an *XN*-element sequence f and a *K*-element filter g, the 1D convolution output $y = F_{XN,K}(f,g)$ can be computed by following computation step:
 - Sequence split: $f_x = f[xN:(x+1)N 1]$.
 - 1D convolution: $y_x = F_{N,K}(f_x, g)$
 - $y_x \rightarrow y_x[n xN]$
 - $y[n] = \sum_{x=0}^{X-1} y_x[n-xN]$

2D DNN Convolution Extension

• DNN convolution layers have convolution pattern and can be built upon our 1D convolution techniques

2D DNN Convolution Extension

DNN convolution formula:

$$O[c_o][h][w] = \sum_{c_i=0}^{C_i-1} \sum_{k_h=0}^{K-1} \sum_{k_w=0}^{K-1} I[c_i][h+k_h][w+k_w]W[c_o][c_i][k_h][k_w]$$

• **Theorem**: For a DNN convolution, the output feature-map can be computed by $F_{N,K}$ 1-D convolution with the following equation:

$$O[c_o][h][w] = \sum_{c_i=0}^{C_i-1} \sum_{k_h=0}^{K-1} \sum_{x=0}^{\left\lceil \frac{W_i}{N} \right\rceil - 1} y_{c_i, c_o, h, k_h, x} [w - xN + K - 1]$$

Where

$$\begin{cases} y_{c_i,c_o,h,k_h,x} = F_{N,K}(f,g) \\ f = I[c_i][h+k_h][xN:(x+1)N-1] \\ g = W[c_o][c_i][k_h][K-1:0] \end{cases}$$

Evaluation: Single Multiplication Unit Throughput

- Evaluation computation unit
 - CPU : 32 bit multiplier
 - FPGA: 27x18 bit multiplier
- Maximum N,K with bitwidth constraint
 - $-p + (N-1)S \leq Bit_A$
 - $q + (K-1)S \le Bit_B$
- Evaluation throughput
 - Maximum number of effective operations (add or multiplication) in convolution within each multiplication

CPU: A = 32 bits, B = 32 bits

FPGA: A = 27 bits, B = 18 bits

Evaluation: General Purpose Processors

- Test platform
 - Intel Core i7-10700K CPU and i7-10710U CPU
- Test case
 - 1D and 2D convolution
 - 32bit multiplier, unsigned 4-bit data
 - K=3,N=3, S=10
 - 1D convolution with different bitwidth
- ~3x faster than the baseline algorithm

Evaluation: Reconfigurable Computation Device

• Platform:

Xilinx Ultra96 MPSoC platform

BNN testcase:

- 1bit weight and 1bit feature map
- Same performance
- LUTs to DSP ratio: 43.7~76.6

Table I: Comparison of Resource util. of binary convolution

# of Concurrent MACs		336	576	960	1536	3072
BNN-LUT	LUT	3371	4987	7764	12078	23607
	LUT	2672	2536	3369	3587	9319
BNN-HiKonv	DSP	16	32	64	128	256
	DSP Thro.	21	18	15	12	12
	LUT/DSP	43.7	76.6	68.7	65.4	55.8

Evaluation: Reconfigurable Computation Device

- Low Bitwidth DNN testcase
 - 4bit CNN model
 - DACSDC 2020
 Winner Ultranet
 - ~ 2.37X better performance
 - ~2.61X DSP efficiency

Table II: UltraNet resource and performance.

	LUT	DSP	fps	DSP Eff. (Gops/DSP)
UltraNet	4.3k	360	248	0.289
UltraNet-HiKonv	4.8k	327	401/588	0.514/0.753
			2.37X	2.61X

Conclusion

- Proposed a general technique, Hikonv, with theoretical guarantees for using a single multiplier unit to process multiple low-bitwidth convolution operations in parallel for significantly higher computation throughput with flexible bitwidths.
- HiKonv supports both the 1D convolution and DNN convolutions
- Achieved 3.17x throughput improvement on CPU solutions and 2.37x performance improvements on FPGA solutions.

Thank You! Q & A

Σ

