HiKonv: High Throughput Quantized Convolution With Novel Bit-wise Management and Computation

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen

Electrical \& Computer Engineering
GRAINGER COLLEGE OF ENGINEERING

Bio of the team

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen
University of Illinois at Urbana-Champaign
Advanced Digital Sciences Center, Singapore University at Buffalo

Outline

- Introduction
- Preliminary
- 1D Convolution
- HiKonv: Multiplication for Convolution
- Basic idea
- Detailed bit management
- DNN extension
- Evaluation

Introduction

- DNN quantization
- Low-bitwidth data (e.g., 4bit or even less)
- Common hardware computation unit
- FPGA: DSPs

- CPU: ALUs
- Supports large bitwidth arithmetic (16bit \& above)
- Computation wastage for low bitwidth operands
- Previous work for multiple low bitwidth computation
- FPGA: INT4 Optimization, INT8 Optimization
- CPU: AVX based solution for 8bit
- Our contributions:
- Generalize the solution for all valid quantization bitwidths, ranging from 1 bit to 8 bits
- Provide theoretical foundation for achieving the maximal possible throughput

Preliminary: 1D-Convolution

- The conventional 1-D discrete convolution between an N-element sequence f and a K-element kernel g (denoted as $\left.y=F_{N, K}(f, g)\right)$
- All the values are zero when indices smaller than zero or bigger than the length of the sequences

$$
y[m]=(f * g)[m]=\sum_{k=0}^{K-1} f[m-k] g[k]
$$

- Alternative representation (replacing $m-k$ with n)

$$
y[m]=\sum_{k+n=m} f[n] g[k]
$$

- y contains $N+K-1$ non-zero elements

Multiplier for Convolution: 1-D Convolution

- Idea: The product of high bit-width integer multiplication can be used to perform multiple low bit-width 1D convolution operations simultaneously with proper bit management of multiplicands.
$-P=A \times B$
$-y=[f[0] g[0], f[0] g[1]+f[1] g[0], f[0] g[2]+f[1] g[1]+f[2] g[0] \ldots . .$.

Multiplier for Convolution: Iow bit-width 1-D Convolution

- Multiplication: $P=A \times B$
- Input multiplicands:
- Formularization:

p bits	Element from f Element from g		S bits
q bits			
f[$\mathrm{N}-1]$...	f[1]	f[0]
g[K-1]	...	g [1]	g[0]

$$
A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}
$$

- Output product:
- Formularization:

$$
P=\sum_{m=0}^{N+K-2} y[m] \cdot 2^{S m}
$$

$$
\begin{aligned}
& P=A \times B=\left(\sum_{n=0}^{N-1} f[n] 2^{S n}\right) \cdot\left(\sum_{k=0}^{K-1} g[k] 2^{S k}\right) \\
& =\sum_{m=0}^{N+K-2}\left(\sum_{n+k=m}\left(f[n] \cdot 2^{s n} \cdot g[k] \cdot 2^{s k}\right)\right) \\
& =\sum_{m=0}^{N+K-2}\left(\sum_{\substack{n+k=m \\
N+K-2}}(f[n] g[k]) \cdot 2^{s m}\right) \\
& =\sum_{m=0}^{N+K-2} y[m] \cdot 2^{s m}
\end{aligned}
$$

Multiplier for Convolution: Bitwidth Constraints

- Choice of S
- S-bit segment should be large enough to contain each y element
- Guard bit G_{b} prevents overflow from accumulation
- $G_{b}=\left\lceil\log _{2} \min (K, N)\right\rceil$
- Bit width constraints:
- The packed bit width cannot exceed the multiplicands

$$
\left\{\begin{array}{l}
p+(N-1) S \leq B i t_{A} \\
q+(K-1) S \leq B \operatorname{Bit}_{B}
\end{array}\right.
$$ bitwidth

- Bit $_{A}$ and $B i t_{B}$: bitwidth of multiplicand A and B

$$
A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}
$$

$$
\begin{gathered}
S= \begin{cases}q+G_{b}, & p=1, q \geq 1 \\
p+G_{b}, & q=1, p \geq 1 \\
p+q+G_{b}, & \text { otherwise }\end{cases} \\
y[m]=\sum_{k+n=m} f[n] g[k]
\end{gathered}
$$

p bits

		S bits		
$f[N-1]$	\ldots	$f[1]$		$f[0]$
$g[K-1]$	\ldots	$g[1]$		$g[0]$
q bits				

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
- Output Slicing: $P=\sum_{m=0}^{N+K-2} y[\mathrm{~m}] \cdot 2^{S m}$
- Efficient packing and slicing
- Unsigned f and g :
- $A[S(n+1)-1: S n]=f[n]$
- $B[S(k+1)-1: S k]=g[k]$
- $P[S(m+1)-1: S m]=y[m]$

$$
A=f[3] \cdot 2^{3 S}+f[2] \cdot 2^{2 S}+f[1] \cdot 2^{S}+f[0]
$$

p bits $\quad s$ bits $\quad s$ bits $\quad s$ bits

-		1	
f[3]		0	
0	f[2]	¢	
	0	f[1]	0
	0		f 0]
f[3]	f[2]	f[1]	f 0]
$A[3 S+p-1: 3 S]$	A[3S-1:2S]	A[2S-1:S]	A[S-1:0]

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
$A=f[3] \cdot 2^{3 S}+f[2] \cdot 2^{2 S}+f[1] \cdot 2^{S}+f[0]$
p bits
s bits $\underset{\text { s bits }}{f} \quad f$

-	1	1	
f[3]			
MSBs	f[2]	¢	
	MSBs	f[1]	0
	MSBs		f[0]
			f[0]

$\mathrm{A}[\mathrm{S}-1: 0]$
$\mathrm{A}[\mathrm{S}-1: 0]=\mathrm{f}[0]$

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
- Output Slicing: $P=\sum_{m=0}^{N+K-2} y[\mathrm{~m}] \cdot 2^{S m}$
- Efficient packing and slicing-
- Unsigned f and g :
- $A[S(n+1)-1: S n]=f[n]$
- $B[S(k+1)-1: S k]=g[k]$
- $y[m]=P[S(m+1)-1: S m]$
- Signed f and g :

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
- Output Slicing: $P=\sum_{m=0}^{N+K-2} y[\mathrm{~m}] \cdot 2^{S m}$
- Efficient packing and slicing-
- Unsigned f and g :
- $A[S(n+1)-1: S n]=f[n]$
- $B[S(k+1)-1: S k]=g[k]$
- $y[m]=P[S(m+1)-1: S m]$
- Signed f and g :

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
- Output Slicing: $P=\sum_{m=0}^{N+K-2} y[m] \cdot 2^{S m}$
- Efficient packing and slicing-
- Unsigned f and g :
- $A[S(n+1)-1: S n]=f[n]$
- $B[S(k+1)-1: S k]=g[k]$
- $y[m]=P[S(m+1)-1: S m]$
- Signed f and g :
- $A[S(n+1)-1: S n]=\left\{\begin{array}{c}f[0], n=0 \\ f[n]-A[S n-1], n>0\end{array}\right.$
- $B[S(k+1)-1: S]=\left\{\begin{array}{c}g[0], k=0 \\ g[k]-B[S k-1], k>0\end{array}\right.$

Multiplier for Convolution: Bit Management

- Multiplication for convolution
- Input Packing: $A=\sum_{n=0}^{N-1} f[n] \cdot 2^{S n}, B=\sum_{k=0}^{K-1} g[k] \cdot 2^{S k}$
- Output Slicing: $P=\sum_{m=0}^{N+K-2} y[\mathrm{~m}] \cdot 2^{S m}$
- Efficient packing and slicing-
- Unsigned f and g :
- $A[S(n+1)-1: S n]=f[n]$
- $B[S(k+1)-1: S k]=g[k]$
- $y[m]=P[S(m+1)-1: S m]$
- Signed f and g :

$$
\text { - } A[S(n+1)-1: S n]=\left\{\begin{array}{c}
f[0], n=0 \\
f[n]-A[S n-1], n>0
\end{array}\right.
$$

- $B[S(k+1)-1: S k]=\left\{\begin{array}{c}g[0], k=0 \\ g[k]-B[S k-1], k>0\end{array}\right.$
- $y[m]=\left\{\begin{array}{r}P[S-1: 0], m=0 \\ P[S(m+1)-1: S m]+P[S m-1], m>0\end{array}\right.$
$A=f[3] \cdot 2^{3 S}+f[2] \cdot 2^{2 S}+f[1] \cdot 2^{S}+f[0]$
p bits $\quad S$ bits $\quad S$ bits $\quad S$ bits

$$
y[m]=\left\{\begin{array}{r}
P[S-1: 0], m=0 \\
P[S(m+1)-1: S m]+P[S m-1], m>0
\end{array}\right.
$$

1D Convolution Extension: Split and Accumulation

- Idea:
- Partition the original sequence into multiple subsequences
- Compute 1D convolution for each subsequence
- Accumulate the subsequence results to produce the final convolution solution
- Example:
- 4-element sequence f and 3-element sequence
g
- $f \rightarrow f_{0,1} \mid f_{2,3}$
$-y_{0}=F_{2,3}\left(f_{0,1}, g\right), y_{1}=F_{2,3}\left(f_{2,3}, g\right)$
- $y=F_{4,3}(f, g)$ can be composed based on the elements in y_{0} and y_{1}

$\mathbf{y}_{0}[3]$	$\mathbf{y}_{0}[2]$	$\mathbf{y}_{0}[1]$	$\mathbf{y}_{0}[0]$

$y_{1}[3]$	$y_{1}[2]$	$y_{1}[1]$	$y_{1}[0]$

1D Convolution Extension: Theorem to Generalize the Technique

- Theorem: Given and an $X N$-element sequence f and a K-element filter g, the 1D convolution output $y=F_{X N, K}(f, g)$ can be computed by following computation step:
- Sequence split: $f_{x}=f[x N:(x+1) N-1]$.
- 1D convolution: $y_{x}=F_{N, K}\left(f_{x}, g\right)$
- $y_{x} \rightarrow y_{x}[n-x N]$
$-y[n]=\sum_{x=0}^{X-1} y_{x}[n-x N]$

2D DNN Convolution Extension

- DNN convolution layers have convolution pattern and can be built upon our 1D convolution techniques

2D DNN Convolution Extension

- DNN convolution formula:

$$
O\left[c_{o}\right][h][w]=\sum_{c_{i}=0}^{c_{i}-1} \sum_{k_{h}=0}^{K-1} \sum_{k_{w}=0}^{K-1} I\left[c_{i}\right]\left[h+k_{h}\right]\left[w+k_{w}\right] W\left[c_{o}\right]\left[c_{i}\right]\left[k_{h}\right]\left[k_{w}\right]
$$

- Theorem: For a DNN convolution, the output feature-map can be computed by $F_{N, K}$ 1-D convolution with the following equation:

$$
o\left[c_{o}\right][h][w]=\sum_{c_{i}=0}^{c_{i}-1} \sum_{k_{h}=0}^{K-1} \sum_{x=0}^{\left.\left\lvert\, \frac{W_{i}}{N}\right.\right]-1} y_{c_{i}, c_{0}, h, k_{h}, x}[w-x N+K-1]
$$

Where

$$
\left\{\begin{array}{c}
y_{c_{i}, c_{o}, h, k_{h}, x}=F_{N, K}(f, g) \\
f=I\left[c_{i}\right]\left[h+k_{h}\right][x N:(x+1) N-1] \\
g=W\left[c_{o}\right]\left[c_{i}\right]\left[k_{h}\right][K-1: 0]
\end{array}\right.
$$

Evaluation: Single Multiplication Unit Throughput

- Evaluation computation unit
- CPU : 32 bit multiplier
- FPGA: 27×18 bit multiplier
- Maximum N, K with bitwidth constraint
$-p+(N-1) S \leq$ Bit $_{A}$
$-q+(K-1) S \leq$ Bit $_{B}$
- Evaluation throughput
- Maximum number of effective operations (add or multiplication) in convolution within each multiplication
- (p-bit, q-bit, \# ops)

CPU: $A=32$ bits, $B=32$ bits

FPGA: $\mathrm{A}=27$ bits, $\mathrm{B}=18$ bits

Evaluation: General Purpose Processors

- Test platform
- Intel Core i7-10700K CPU and i710710 U CPU
- Test case
- 1D and 2D convolution
- 32bit multiplier, unsigned 4-bit data
- K=3,N=3, S=10
- 1D convolution with different bitwidth
- ~3x faster than the baseline algorithm

Evaluation: Reconfigurable Computation Device

- Platform:
- Xilinx Ultra96 MPSoC platform
- BNN testcase:
- 1bit weight and 1bit feature map
- Same performance
- LUTs to DSP ratio: 43.7~76.6

Table I: Comparison of Resource util. of binary convolution

\# of Concurrent MACs		336	576	960	1536	3072
BNN-LUT	LUT	3371	4987	7764	12078	23607
BNN-HiKonv	LUT	2672	2536	3369	3587	9319
	DSP	16	32	64	128	256
	DSP Thro.	21	18	15	12	12
	LUT/DSP	43.7	76.6	68.7	65.4	55.8

Evaluation: Reconfigurable Computation Device

- Low Bitwidth DNN testcase
- 4bit CNN model
- DACSDC 2020 Winner Ultranet
- ~ 2.37X better performance
- ~2.61X DSP efficiency

Table II: UltraNet resource and performance.

	LUT	DSP	fps	DSP Eff. (Gops/DSP)
UltraNet	4.3 k	360	248	0.289
UltraNet-HiKonv	4.8 k	327	$401 / 588$	$0.514 / 0.753$
2.37 X				2.61 X

Conclusion

- Proposed a general technique, Hikonv, with theoretical guarantees for using a single multiplier unit to process multiple low-bitwidth convolution operations in parallel for significantly higher computation throughput with flexible bitwidths.
- HiKonv supports both the 1D convolution and DNN convolutions
- Achieved 3.17x throughput improvement on CPU solutions and 2.37x performance improvements on FPGA solutions.

Thank You!
 Q \& A

