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§ DNN quantization
– Low-bitwidth data (e.g., 4bit or even less)

§ Common hardware computation unit
– FPGA: DSPs 
– CPU: ALUs
– Supports large bitwidth arithmetic (16bit & above)
– Computation wastage for low bitwidth operands

§ Previous work for multiple low bitwidth computation
– FPGA: INT4 Optimization, INT8 Optimization
– CPU: AVX based solution for 8bit 

§ Our contributions:
– Generalize the solution for all valid quantization bitwidths, ranging from 1 bit to 8 bits
– Provide theoretical foundation for achieving the maximal possible throughput

Introduction
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§ The conventional 1-D discrete convolution between an 𝑁-element sequence 𝑓 and a 𝐾-element kernel 
𝑔 (denoted as 𝑦 = 𝐹!,#(𝑓, 𝑔) )
– All the values are zero when indices smaller than zero or bigger than the length of the sequences

§ Alternative representation (replacing 𝑚 − 𝑘 with 𝑛)

§ 𝑦 contains 𝑁 + 𝐾 − 1 non-zero elements

Preliminary: 1D-Convolution
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𝑦 𝑚 = 𝑓 ∗ 𝑔 𝑚 = '
!"#

$%&

𝑓 𝑚 − 𝑘 𝑔 𝑘

𝑦 𝑚 = '
!'(")

𝑓 𝑛 𝑔 𝑘



§ Idea: The product of high bit-width integer multiplication can be used to perform multiple low bit-width 1D 
convolution operations simultaneously with proper bit management of multiplicands.
– 𝑃 = 𝐴×𝐵
– y=[ f[0]g[0], f[0]g[1]+f[1]g[0],  f[0]g[2]+f[1]g[1]+f[2]g[0] ..... ] 

Multiplier for Convolution: 1-D Convolution
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§ Multiplication: 𝑃 = 𝐴×𝐵
§ Input multiplicands:

– Formularization:

§ Output product:
– Formularization:

𝑃 = '
)"#

*'$%+

𝑦 𝑚 ⋅ 2,)

Multiplier for Convolution: low bit-width 1-D Convolution
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§ Choice of 𝑆
– 𝑆-bit segment should be large enough to contain each y 

element
– Guard bit 𝐺. prevents overflow from accumulation
– 𝐺. = log/min(𝐾,𝑁)

§ Bit width constraints:
– The packed bit width cannot exceed the multiplicands 

bitwidth
– 𝐵𝑖𝑡0 and 𝐵𝑖𝑡1 : bitwidth of multiplicand A and B

Multiplier for Convolution: Bitwidth Constraints
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§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑃 𝑆 𝑚+1 −1:𝑆𝑚 = 𝑦 𝑚

Multiplier for Convolution: Bit Management
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§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management
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§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management
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§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management

12

MSBs 0

0

MSBs 0

11111111111111111111111111111111111111111111 f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

f[0]

f[0]>=0 A[2S-1:S]=f[1]

f[0]<  0

f[1]-1

111111111111111

A[2S-1:S]=f[1]2+1111...1112=f[1]-1

A[2S-1:S]



§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:
• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 0

𝑓 0 , 𝑛 = 0
𝑓 𝑛 − 𝐴[𝑆𝑛−1], 𝑛 > 0

• 𝐵 𝑆 𝑘+1 −1:𝑆 = 0
𝑔 0 , 𝑘 = 0

𝑔 𝑘 − 𝐵 𝑆𝑘−1 , 𝑘 > 0

Multiplier for Convolution: Bit Management
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§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,( , 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:
• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 0

𝑓 0 , 𝑛 = 0
𝑓 𝑛 − 𝐴[𝑆𝑛−1], 𝑛 > 0

• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 0
𝑔 0 , 𝑘 = 0

𝑔 𝑘 − 𝐵 𝑆𝑘−1 , 𝑘 > 0

• 𝑦 𝑚 = 0 𝑃 𝑆−1:0 ,𝑚 = 0
𝑃 𝑆 𝑚+1 −1:𝑆𝑚 +𝑃 𝑆𝑚−1 ,𝑚 > 0

Note: the most significant slice has a different format

Multiplier for Convolution: Bit Management
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§ Idea:
– Partition the original sequence into multiple 

subsequences
– Compute 1D convolution for each subsequence
– Accumulate the subsequence results to produce 

the final convolution solution
§ Example:

– 4-element sequence 𝑓 and 3-element sequence 
𝑔

– 𝑓 → 𝑓#,&| 𝑓+,0
– 𝑦# = 𝐹+,0 𝑓#,&, 𝑔 , 𝑦& = 𝐹+,0 𝑓+,0, 𝑔
– 𝑦 = 𝐹2,0 𝑓, 𝑔 can be composed based on the 

elements in 𝑦# and 𝑦&

1D Convolution Extension: Split and Accumulation
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§ Theorem: Given and an 𝑋𝑁-element sequence 𝑓 and a 𝐾-element filter 𝑔, 
the 1D convolution output 𝑦 = 𝐹<!,#(𝑓, 𝑔) can be computed by following 
computation step:
– Sequence split: 𝑓= = 𝑓[𝑥𝑁: (𝑥 + 1)𝑁 − 1].
– 1D convolution: 𝑦= = 𝐹!,# 𝑓=, 𝑔
– 𝑦= → 𝑦= 𝑛 − 𝑥𝑁
– 𝑦 𝑛 = ∑=>?<@A𝑦= 𝑛 − 𝑥𝑁

1D Convolution Extension: Theorem to Generalize the Technique
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2D DNN Convolution Extension
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§ DNN convolution layers have convolution pattern and can be built upon our 1D convolution techniques

2D convolution 1D convolution for rows subsequence based 1D convolutions 



§ DNN convolution formula:

𝑂 𝑐, ℎ 𝑤 =G
-!"#

.!'/

G
*""#

&'/

G
*#"#

&'/

𝐼 𝑐0 ℎ + 𝑘1 𝑤 + 𝑘2 𝑊 𝑐, 𝑐0 𝑘1 𝑘2

§ Theorem: For a DNN convolution, the output feature-map can be computed by 𝐹!,# 1-D convolution with the 
following equation:

𝑂 𝑐, ℎ 𝑤 =G
-!"#

.!'/

G
*""#

&'/

G
3"#

4!
$ '/

𝑦-!,-$,1,*",3 𝑤 − 𝑥𝑁 + 𝐾 − 1

Where

K
𝑦-!,-$,1,*",3 = 𝐹$,& 𝑓, 𝑔

𝑓 = 𝐼 𝑐0 ℎ + 𝑘1 𝑥𝑁: 𝑥 + 1 𝑁 − 1
𝑔 = 𝑊 𝑐, 𝑐0 𝑘1 𝐾 − 1: 0

2D DNN Convolution Extension
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§ Evaluation computation unit
– CPU : 32 bit multiplier
– FPGA: 27x18 bit multiplier

§ Maximum N,K with bitwidth constraint
– 𝑝 + 𝑁 − 1 𝑆 ≤ 𝐵𝑖𝑡0
– 𝑞 + 𝐾 − 1 𝑆 ≤ 𝐵𝑖𝑡1

§ Evaluation throughput
– Maximum number of effective 

operations (add or multiplication) in 
convolution within each multiplication 

Evaluation: Single Multiplication Unit Throughput
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CPU: A = 32 bits, B = 32 bits FPGA: A = 27 bits, B = 18 bits



Evaluation: General Purpose Processors
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§ Test platform
– Intel Core i7-10700K CPU and i7-

10710U CPU
§ Test case

– 1D and 2D convolution
• 32bit multiplier, unsigned 4-bit data
• K=3,N=3, S=10

– 1D convolution with different bitwidth
§ ~3x faster than the baseline algorithm

1-D Convolution

2-D Convolution Speedup for different bitwidths.



§ Platform:
– Xilinx Ultra96 MPSoC platform

§ BNN testcase:
– 1bit weight and 1bit feature map
– Same performance
– LUTs  to DSP  ratio: 43.7~76.6

Evaluation: Reconfigurable Computation Device
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§ Low Bitwidth DNN 
testcase
– 4bit CNN model
– DACSDC 2020 

Winner Ultranet
– ~ 2.37X better 

performance
– ~2.61X DSP

efficiency
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Evaluation: Reconfigurable Computation Device

2.37X 2.61X



§ Proposed a general technique, Hikonv, with theoretical guarantees for using a single 
multiplier unit to process multiple low-bitwidth convolution operations in parallel for 
significantly higher computation throughput with flexible bitwidths.

§ HiKonv supports both the 1D convolution and DNN convolutions 
§ Achieved 3.17x throughput improvement on CPU solutions and 2.37x performance 

improvements on FPGA solutions.

Conclusion
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Thank You!
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