
HiKonv: High Throughput Quantized Convolution With Novel
Bit-wise Management and Computation

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen

Bio of the team

2

Xinheng Liu, Yao Chen, Prakhar Ganesh, Junhao Pan, Jinjun Xiong, Deming Chen

University of Illinois at Urbana-Champaign
Advanced Digital Sciences Center, Singapore

University at Buffalo

§ Introduction
§ Preliminary
– 1D Convolution

§ HiKonv: Multiplication for Convolution
– Basic idea
– Detailed bit management
– DNN extension

§ Evaluation

Outline

3

§ DNN quantization
– Low-bitwidth data (e.g., 4bit or even less)

§ Common hardware computation unit
– FPGA: DSPs
– CPU: ALUs
– Supports large bitwidth arithmetic (16bit & above)
– Computation wastage for low bitwidth operands

§ Previous work for multiple low bitwidth computation
– FPGA: INT4 Optimization, INT8 Optimization
– CPU: AVX based solution for 8bit

§ Our contributions:
– Generalize the solution for all valid quantization bitwidths, ranging from 1 bit to 8 bits
– Provide theoretical foundation for achieving the maximal possible throughput

Introduction

4

§ The conventional 1-D discrete convolution between an 𝑁-element sequence 𝑓 and a 𝐾-element kernel
𝑔 (denoted as 𝑦 = 𝐹!,#(𝑓, 𝑔))
– All the values are zero when indices smaller than zero or bigger than the length of the sequences

§ Alternative representation (replacing 𝑚 − 𝑘 with 𝑛)

§ 𝑦 contains 𝑁 + 𝐾 − 1 non-zero elements

Preliminary: 1D-Convolution

5

𝑦 𝑚 = 𝑓 ∗ 𝑔 𝑚 = '
!"#

$%&

𝑓 𝑚 − 𝑘 𝑔 𝑘

𝑦 𝑚 = '
!'(")

𝑓 𝑛 𝑔 𝑘

§ Idea: The product of high bit-width integer multiplication can be used to perform multiple low bit-width 1D
convolution operations simultaneously with proper bit management of multiplicands.
– 𝑃 = 𝐴×𝐵
– y=[f[0]g[0], f[0]g[1]+f[1]g[0], f[0]g[2]+f[1]g[1]+f[2]g[0]]

Multiplier for Convolution: 1-D Convolution

6

f[0]A

B

Prod

x

S bits

g[0]

p + q bits

p bits

q bits

Element from f

Element from g

S bits

x

Guard bits

f[0]g[0]

f[1]

g[1]

f[1]g[0]

f[N-1]

f[N-1]g[0]

f[0]g[1]

g[K-1]

f[0]g[N-1]f[N-1]g[N-1]

y[0]y[1]

S bits

S(N-1) bits

y[N-1]y[2N-2]y[N+K-2]

f[N-2]g[1]

f[N-1]g[K-1]+

q bitsGuard bits

Guard bits p bits

=

§ Multiplication: 𝑃 = 𝐴×𝐵
§ Input multiplicands:

– Formularization:

§ Output product:
– Formularization:

𝑃 = '
)"#

*'$%+

𝑦 𝑚 ⋅ 2,)

Multiplier for Convolution: low bit-width 1-D Convolution

7

S bits

f[0]

g[0]

p bits
q bits

Element from f
Element from g

...

...

f[1]

g[1]

f[N-1]

g[K-1]

𝐴 = '
("#

*%&

𝑓 𝑛 ⋅ 2,(, 𝐵 = '
!"#

$%&

𝑔 𝑘 ⋅ 2,!
𝑃 = 𝐴×𝐵 = '

("#

*%&

𝑓 𝑛 2,(⋅ '
!"#

$%&

𝑔 𝑘 2,!

= %
!"#

$%&'(

%
)%*"!

𝑓 𝑛 ⋅ 2+) ⋅ 𝑔 𝑘 ⋅ 2+*

= %
!"#

$%&'(

%
)%*"!

𝑓 𝑛 𝑔 𝑘 ⋅ 2+!

= %
!"#

$%&'(

𝑦 𝑚 ⋅ 2+!

§ Choice of 𝑆
– 𝑆-bit segment should be large enough to contain each y

element
– Guard bit 𝐺. prevents overflow from accumulation
– 𝐺. = log/min(𝐾,𝑁)

§ Bit width constraints:
– The packed bit width cannot exceed the multiplicands

bitwidth
– 𝐵𝑖𝑡0 and 𝐵𝑖𝑡1 : bitwidth of multiplicand A and B

Multiplier for Convolution: Bitwidth Constraints

8

𝑆 = 3
𝑞 + 𝐺-, 𝑝 = 1, 𝑞 ≥ 1
𝑝 + 𝐺-, 𝑞 = 1, 𝑝 ≥ 1
𝑝 + 𝑞 + 𝐺-, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

B𝑝 + 𝑁 − 1 𝑆 ≤ 𝐵𝑖𝑡.
𝑞 + 𝐾 − 1 𝑆 ≤ 𝐵𝑖𝑡/

𝑦 𝑚 = '
!'(")

𝑓 𝑛 𝑔 𝑘

𝐴 = '
("#

*%&

𝑓 𝑛 ⋅ 2,(, 𝐵 = '
!"#

$%&

𝑔 𝑘 ⋅ 2,!
p bits

q bits

Element from f

Element from g

S bits

f[0]

g[0]

...

...

f[1]

g[1]

f[N-1]

g[K-1]

p bits

q bits

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑃 𝑆 𝑚+1 −1:𝑆𝑚 = 𝑦 𝑚

Multiplier for Convolution: Bit Management

9

0 0

0

0 0

0 f[0]

A[3S+p−1:3S] A[3S−1:2S] A[2S-1:S] A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

0 f[0]0 f[1]0 f[2]f[3]

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management

10

MSBs 0

0

MSBs 0

MSBs f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

f[0]

A[S-1:0]=f[0]

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management

11

MSBs 0

0

MSBs 0

0 f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

f[0]

f[0]>=0

f[1]

A[2S-1:S]=f[1]

A[2S-1:S]

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:

Multiplier for Convolution: Bit Management

12

MSBs 0

0

MSBs 0

11 f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

f[0]

f[0]>=0 A[2S-1:S]=f[1]

f[0]< 0

f[1]-1

111111111111111

A[2S-1:S]=f[1]2+1111...1112=f[1]-1

A[2S-1:S]

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:
• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 0

𝑓 0 , 𝑛 = 0
𝑓 𝑛 − 𝐴[𝑆𝑛−1], 𝑛 > 0

• 𝐵 𝑆 𝑘+1 −1:𝑆 = 0
𝑔 0 , 𝑘 = 0

𝑔 𝑘 − 𝐵 𝑆𝑘−1 , 𝑘 > 0

Multiplier for Convolution: Bit Management

13

MSBs 0

0

MSBs 0

MSBs f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓 0

f[0]f[1]-A[S-1]

A[2S-1:S]

f[2]-A[2S-1]

A[3S-1:2S]

f[3]-A[3S-1]

A[3S+p-1:3S]

§ Multiplication for convolution
– Input Packing: 𝐴 = ∑("#*%&𝑓 𝑛 ⋅ 2,(, 𝐵 = ∑!"#$%&𝑔 𝑘 ⋅ 2,!

– Output Slicing: 𝑃 = ∑)"#*'$%+𝑦 𝑚 ⋅ 2,)

§ Efficient packing and slicing-
– Unsigned 𝑓 and 𝑔:

• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 𝑓 𝑛
• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 𝑔 𝑘
• 𝑦 𝑚 = 𝑃 𝑆 𝑚+1 −1:𝑆𝑚

– Signed 𝑓 and 𝑔:
• 𝐴 𝑆 𝑛+1 −1:𝑆𝑛 = 0

𝑓 0 , 𝑛 = 0
𝑓 𝑛 − 𝐴[𝑆𝑛−1], 𝑛 > 0

• 𝐵 𝑆 𝑘+1 −1:𝑆𝑘 = 0
𝑔 0 , 𝑘 = 0

𝑔 𝑘 − 𝐵 𝑆𝑘−1 , 𝑘 > 0

• 𝑦 𝑚 = 0 𝑃 𝑆−1:0 ,𝑚 = 0
𝑃 𝑆 𝑚+1 −1:𝑆𝑚 +𝑃 𝑆𝑚−1 ,𝑚 > 0

Note: the most significant slice has a different format

Multiplier for Convolution: Bit Management

14

MSBs 0

0

MSBs 0

MSB f[0]

A[S-1:0]

S bitsS bitsp bits

f[1]

f[2]

f[3]

S bits

𝐴 = 𝑓 3 ⋅ 20, + 𝑓 2 ⋅ 2+, + 𝑓 1 ⋅ 2, + 𝑓[0]

f[0]f[1]-A[S-1]

A[2S-1:S]

f[2]-A[2S-1]

A[3S-1:2S]

f[3]-A[3S-1]

A[3S+p-1:3S]

𝑃 𝑆 m+1 −1:𝑆𝑚 = 9 𝑦 0 ,𝑚 = 0
𝑦 𝑚 − 𝑃 𝑆m−1 ,𝑚 > 0

𝑦 𝑚 = B 𝑃 𝑆−1:0 ,𝑚 = 0
𝑃 𝑆 𝑚+1 −1:𝑆𝑚 +𝑃 𝑆𝑚−1 ,𝑚 > 0

§ Idea:
– Partition the original sequence into multiple

subsequences
– Compute 1D convolution for each subsequence
– Accumulate the subsequence results to produce

the final convolution solution
§ Example:

– 4-element sequence 𝑓 and 3-element sequence
𝑔

– 𝑓 → 𝑓#,&| 𝑓+,0
– 𝑦# = 𝐹+,0 𝑓#,&, 𝑔 , 𝑦& = 𝐹+,0 𝑓+,0, 𝑔
– 𝑦 = 𝐹2,0 𝑓, 𝑔 can be composed based on the

elements in 𝑦# and 𝑦&

1D Convolution Extension: Split and Accumulation

15

f[0]g[0]f[1]g[0]
f[0]g[1]f[1]g[1]

f[0]g[2]f[1]g[2]

f[2]g[0]f[3]g[0]
f[2]g[1]f[3]g[1]

f[2]g[2]f[3]g[2]

y[0]y [1]y[2]y[3]y[4]y[5]

y0[0]y0[1]y0[2]y0[3]

y1[0]y1[1]y1[2]y1[3]

𝑦 = 𝐹*,$(𝑓, 𝑔)

§ Theorem: Given and an 𝑋𝑁-element sequence 𝑓 and a 𝐾-element filter 𝑔,
the 1D convolution output 𝑦 = 𝐹<!,#(𝑓, 𝑔) can be computed by following
computation step:
– Sequence split: 𝑓= = 𝑓[𝑥𝑁: (𝑥 + 1)𝑁 − 1].
– 1D convolution: 𝑦= = 𝐹!,# 𝑓=, 𝑔
– 𝑦= → 𝑦= 𝑛 − 𝑥𝑁
– 𝑦 𝑛 = ∑=>?<@A𝑦= 𝑛 − 𝑥𝑁

1D Convolution Extension: Theorem to Generalize the Technique

16

2D DNN Convolution Extension

17

§ DNN convolution layers have convolution pattern and can be built upon our 1D convolution techniques

2D convolution 1D convolution for rows subsequence based 1D convolutions

§ DNN convolution formula:

𝑂 𝑐, ℎ 𝑤 =G
-!"#

.!'/

G
*""#

&'/

G
*#"#

&'/

𝐼 𝑐0 ℎ + 𝑘1 𝑤 + 𝑘2 𝑊 𝑐, 𝑐0 𝑘1 𝑘2

§ Theorem: For a DNN convolution, the output feature-map can be computed by 𝐹!,# 1-D convolution with the
following equation:

𝑂 𝑐, ℎ 𝑤 =G
-!"#

.!'/

G
*""#

&'/

G
3"#

4!
$ '/

𝑦-!,-$,1,*",3 𝑤 − 𝑥𝑁 + 𝐾 − 1

Where

K
𝑦-!,-$,1,*",3 = 𝐹$,& 𝑓, 𝑔

𝑓 = 𝐼 𝑐0 ℎ + 𝑘1 𝑥𝑁: 𝑥 + 1 𝑁 − 1
𝑔 = 𝑊 𝑐, 𝑐0 𝑘1 𝐾 − 1: 0

2D DNN Convolution Extension

18

§ Evaluation computation unit
– CPU : 32 bit multiplier
– FPGA: 27x18 bit multiplier

§ Maximum N,K with bitwidth constraint
– 𝑝 + 𝑁 − 1 𝑆 ≤ 𝐵𝑖𝑡0
– 𝑞 + 𝐾 − 1 𝑆 ≤ 𝐵𝑖𝑡1

§ Evaluation throughput
– Maximum number of effective

operations (add or multiplication) in
convolution within each multiplication

Evaluation: Single Multiplication Unit Throughput

19

CPU: A = 32 bits, B = 32 bits FPGA: A = 27 bits, B = 18 bits

Evaluation: General Purpose Processors

20

§ Test platform
– Intel Core i7-10700K CPU and i7-

10710U CPU
§ Test case

– 1D and 2D convolution
• 32bit multiplier, unsigned 4-bit data
• K=3,N=3, S=10

– 1D convolution with different bitwidth
§ ~3x faster than the baseline algorithm

1-D Convolution

2-D Convolution Speedup for different bitwidths.

§ Platform:
– Xilinx Ultra96 MPSoC platform

§ BNN testcase:
– 1bit weight and 1bit feature map
– Same performance
– LUTs to DSP ratio: 43.7~76.6

Evaluation: Reconfigurable Computation Device

21

§ Low Bitwidth DNN
testcase
– 4bit CNN model
– DACSDC 2020

Winner Ultranet
– ~ 2.37X better

performance
– ~2.61X DSP

efficiency

22

Evaluation: Reconfigurable Computation Device

2.37X 2.61X

§ Proposed a general technique, Hikonv, with theoretical guarantees for using a single
multiplier unit to process multiple low-bitwidth convolution operations in parallel for
significantly higher computation throughput with flexible bitwidths.

§ HiKonv supports both the 1D convolution and DNN convolutions
§ Achieved 3.17x throughput improvement on CPU solutions and 2.37x performance

improvements on FPGA solutions.

Conclusion

23

Thank You!

24

Q & A

