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INTRODUCTION



44

High Bandwidth

0

100

200

300

400

500

2017 2018 2019 2020 2021 2022

• Demands on high bandwidth are exponentially increasing.

• High bandwidth memories (HBMs) are integrated in 2.5D ICs.
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Silicon Interposer Layer

• Interposer layer is used for interconnection between chiplets.

• For high bandwidth, thousands of channels transmit data at high speed.

• Interpose channels are vulnerable to crosstalk and data loss.
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Interposer Routing
• Limited number of interposer layers

• Increasing number of bump I/Os

• Various bump patterns & tech node

• Geometric offsets between chiplets

• Complex design rules

• Metal guarding for signal integrity

• Wirelength matching for zero-skew

Complicating factors for routing

• Traditional manual routing takes too much time and effort of designers.

• Fast & tech-independent interposer auto-router becomes essential.

Bump I/Os
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INTERPOSER BUS ROUTING
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Interposer Bus Routing
• Overall flow

LEF/DEF Input 
parameters

Interposer Routing
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Evaluation
Interposer Routing

Assessment

post-optimization

Objectives
• Maximize signal integrity

Inputs
• Netlist
• Bump I/O placed layout

Outputs
• Routed layout

Constraints
• Design rules
• Wirelength matching
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SoC

Interposer
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Bus & Layer Assignment
Bus assignment Layer assignment

Objectives
• Maximize routing resource
• Simplify wirelength matching problem

Restrictions
• Bump patterns
• VDD/VSS power line
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Vi3

Vi2
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TSV

Vi4
Mi5: Bump I/O placement

Mi4: Bus1 routing

Mi3: Metal guarding

Mi2: Bus2 routing

Mi1: Power routing

Microstrip-like structure
for routing layers
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Escape Routing

• Hook-shaped topology is a common topology to avoid short violations.

• To maximize wire pitch, our router firstly places vias, then assigns wires to tracks.

1. Topology generation
VDD
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VDD
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Topology 1

Topology 2
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Topology 4

2. Via placement
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Expected wires

VDD
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VSS

VDD

Placed viaCandidates of via location

• Intervals between vias or VDD/VSS
• Required resources by following topology

Minimize resource error
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Escape Routing

• Assign tracks with observing design rules including spacing, width, area rules.

• To follow the topology, tracks are assigned in the order of bumps.

VSS

VDD

Track VSS

VDD

Wire metal

Via

3. Track assignment

𝒐𝒓𝒅𝒆𝒓 𝒎, 𝒍 =

#𝒄𝒐𝒍×
𝒎
𝟐

+ −𝟏 𝒎"𝒌×
𝒍𝒎𝒐𝒅 #𝒄𝒐𝒍

𝟐
+ 𝒎+ 𝒌 + 𝟏 𝒎𝒐𝒅𝟐

Bump ordering

• Bump is placed at m-th row and l-th column
• #col: the number of columns of bumps in the same bus
• k: the number of rows of bumps between VDD/VSS.
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Signal Integrity Optimization
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• Narrow and long parallel wires are critical to signal integrity

• Widening wire pitch and guarding signal wires improves signal integrity.
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EXPERIMENTAL RESULTS
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Experimental Setup
• Silicon interposer specifications

• Benchmark specifications

Parameter Value
Thickness of routing layers 1 µm

Thickness of cut layers 1 µm

Dielectric constant of SiO2 4

Loss tangent of SiO2 0

Conductivity of Al 3.8x107 S/m

Conductivity of Cu 5.8x107 S/m

Bench Testcase 1 Testcase 2
Number of nets 3496

Area of SoC PHY 14.25 mm2

Area of HBM2 PHY 19.28 mm2

Area of non-PHY region 19.80 mm2 40.20 mm2

Offset between PHYs 0 mm 3.23 mm

X-pitch of micro-bumps 96 µm

Y-pitch of micro-bumps 55 µm

Number of bump-rows btw. VDD/VSS 4

Target bandwidth per I/O pin 3.2 Gbps

• Implemented in C++
• Linux 2.3-GHz CPUs and 8 threads

Router

• ANSYS siwave, aedt circuit design
• Modeling transceiver and receiver

Signal integrity analysis

Tx Rx

Vsource

30 Ω

0.4 pF 0.4 pFS-parameter model of 
interposer channel

Voltage swing [V] 0 – 1.2

Target datarate [Gbps] 3.2 (1 UI = 312.5 ps)

Rising/falling time [ps] 45

Phase delay [ps] 0

PRBS length 15
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Experimental Results
• Routed Layout (Testcase1)

• Design parameters

• Routing quality

Bench Router Width [µm] Min. pitch [µm] Guard width [µm]

Testcase1
Comm 1.50 4.00 -

Ours 1.52 4.77 3.00

Testcase2
Comm 1.50 4.00 -

Ours 1.45 4.62 2.75

Bench Testcase1 Testcase2
Router Comm Ours Comm Ours

Avg. WL [µm] 4948 4655 9125 9067

Max. WLdiff [µm] 1858 14 2536 291

Mi5 usage [%] 0.34 0.03 9.16 0.02

#_vias 26876 6984 32568 6984

#_DRVs 1108 0 2185 0

Runtime[s] 1250 199 1334 227

• Our router shortened average wirelength.
• Our router matched wirelength with only ~1% error.
• Our router used 80% less vias.
• Our router resulted no design rule violations.
• Our router is ~5 times faster.
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Signal Integrity Results
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CONCLUSION
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Conclusion

• Diagonal routing with various angles to further shorten wirelength.

• Find the optimal design parameters using machine learning.

• We propose an interposer router that interconnects heterogeneously integrated

chiplets with different tech nodes and bump patterns.

• Our router achieves much better results than commercial SW in respect to

routing quality, signal integrity, and runtime.

Summary

Future work
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