

Solving Chip Security's Weakest Link

Complete Secure Boundary with PUF-based Hardware Root of Trust

2021 December

Integrated PUF-based Hardware Security IPs

John Chou

Business Development and Technical Marketing Manager

For over 12 years, Mr. Chou has worked with talented teams at start-ups or high-growth Semiconductor IP companies building and promoting cutting-edge technology. He is currently responsible for market development across North America and Europe at PUFsecurity.

Hacking is Everywhere

Threat to Life

Hackers Remotely Kill a Jeep on the Highway

1.4 million vehicle recall by Chrysler, the age of hackable vehicles begins.

Link

Threat to **Privacy**

Threat to Finances

IoT Security Camera hacking demonstration on YouTube

Step by step guides for hacking IoT devices are widely available online.

Link

Colonial Pipeline pay \$4.4m to end ransomware attack

massive shutdown of approximately half of the USA's East Coast fuel supply

Link

Only secure as the weakest link .

- Insecure eFuse key storage can compromise a whole system
- Hackers always finds the weakest link to the system

Combining Hard and Soft IPs -

Security Subsystem		Security systems rely on OTP Memory	
		Secure OTP is replacing eFuse	
Hard Macro (process dep.)	Soft IP (process indep.)	Crypto engines require TRNG	
		TRNG is digital + analog	
Anti-Tamper Design	Secure CPU		
TRNG (entropy)	HASH Crypto	External Key injection is expensive	
		PUF has zero-touch provisioning	
OTP (Secure Storage)	Sym. Crypto		
PUF (Chip Fingerprint)	Asym Crypto	PUF / OTP / TRNG / Anti-tampering Combined into one single Hardware Root of Trust is Ideal	

The Three Fundamentals of Hardware Root of Trust -

- 1. Secure Key Storage
- 2. Root Key Generation
- 3. High-Quality Entropy

Key Storage: Insecure eFuse

- Invisibility means an inherent resistance to Invasive Attacks
- High Reliability even in advanced nodes

Key Storage: with Secure OTP .

Anti-Fuse OTP No PUF-based Storage

• OTP address can be easily located

Secure OTP With PUF Protection

Different Physical location for each chip

Root Key: Generated by Inborn PUF

Without PUF Centralized Identification

- Initial injection required for Key Management Server
- Key Injection must be done during CP or FT
- Extra \$0.5~\$2/eu cost and secure room (audit) needed

With PUF

De-Centralized Identification

- Inborn Unique PUF used directly as UID / HUK
- Key Injection during CP or FT can be relieved until in-field product to comply with Zero-Touch IoT

- Process variation always exists in semiconductor devices, however, adjacent devices are nearly identical
- **NeoPUF** leverages this microscopical minute variations to achieve ideal PUF (ISSCC2019 Outstanding Paper)
- Ideal for Inborn-Key / UID → No need for key provisioning

Quantum Tunneling PUF	Metric	Checked by	Ideal PUF
AF-0 AF-1	Randomness	Hamming Weight (HW)	50%
	Uniqueness	Hamming Distance (HD)	50%
BL L LBL	Robustness	Bit Error Rate (BER)	0%
50% 50%	Helper Data	Error Correction Code	No Need
50 %	Entropy Quality	Min. entropy of bits	1
AF-0(VPP) AF-1(VPP) AF-0(VPP) AF-1(VPP)	Invisibility	Reversed Engineering	Untraceable
	Manufacturability	Yield and Reliability	100%
	Radiation Hardening	Gamma Ray Radiation	Radhard

NeoPUF

0% for all PVT

No Need

Untraceable

Radhard

100%, all Tech.

~1

50%

50%

High-Quality Entropy: PUF-based TRNG -

- **NeoPUF:** 1Kbits, pre-load into the 1K registers
- Random Number Sets: 32-bit LFSR combined a PUF with three ways expansion
- Feedback System: Output reseeds LFSR using two dynamic entropies and conditioning

Concept of PUF-based Hardware Root of Trust -

PUFrt: PUF-based Hardware Root of Trust -

PUFrt: The missing piece of the puzzle -

- Visible eFuse
- No security policy
- Insecure channel possible fault injection, etc.

- Inborn chip fingerprint by PUF
- Complete anti-tampering shell
- Comprehensive secure boundary

Thank You

