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» Problems: As the design flow gets closer to tape-out, the updated circuit timing faces nonnegligible
mismatch between each stage of design flow, posing severe challenges for circuit optimization.
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Background

The worst case slack is over-estimated
by more than 2ns. Such pessimism
causes over-design that wastes power,
area and optimization time.

Pre-routing slack estimate (ns)

-1.0 =0.5 00 05 1.0
Slacks (ns) from post-routing analysis

The pessimism of a commercial tool pre-routing
timing estimate.[DAC’19]

» This work: pre- and post-routing timing correlation

[DAC’19]E. C. Barboza, N. Shukla, Y. Chen, J. Hu, “Machine learning-based pre-routing timing prediction with reduced pessimism,” in 2019 56th ACM/IEEE Design
Automation Conference (DAC), pp. 1-6, IEEE, 2019.
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Fast pre-routing timing
estimation based on traditional
mathematical model

Timing analysis based on
machine learning method
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Related work

Fast pre-routing timing estimation based on traditional mathematical model
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Average increase ratio of net delays between routing and
placement stages for all types of cells

The impact of routing to the cell
delay is much more significant
than that of wire delay.
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Related work

Fast pre-routing timing estimation based on traditional mathematical model
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digital integrated circuits cell type
o _ Average increase ratio of net delays between routing and
Individual wire lengths placement stages for all types of cells
00'SLIP University of  Pre-layout estimation of estimating during the . .
Toronto individual wire lengths technology mapping The impact of routing to the cell
phase of logic synthesis delay is much more significant

Focus: wire length or wire delay estimation than that of wire delay.

Pre-routing timing estimation requirement: 8
(1)fast and accurate (2)pay more attention to cell delay or path delay
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Related work

In recent years, the learning-based methods
have been extended in the application of timing analysis

€ Application: A fast and accurate timing estimator € Application: Wire delay/slew models for internal
which can highly correlate with a sign-off timer to incremental STA to delay the deviation in endpoint
shorten turn-around time slack from a STA tool.

€ ML models: RF, Lasso, XGBoost € ML models: Least squares regression

Large scale design

: Critical paths o Signoff Timer
HoE AT Slacks ©
BT 3 We achieve small
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) ! . correlption
(b) Sign-off timer
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(c) Timing estimator

Physical design iming analysis

e

Design constraints runtime
Design changes

[DAC'20, H. H. Cheng, Fast and accurate wire [SLIP'13, A. B. Kahng, Learning-based approximation of 9
timing estimation on tree and non-tree net structures] interconnect delay and slew in signoff timing tools]
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In recent years, the learning-based methods
have been extended in the application of timing analysis

Application: Predict path-based slack from graph-

based timing analysis

ML models: RF

[ ———— T —— R —— ——— ————————

GBA Timing Reports PBA Timing Reports

M

Feature Extraction Training

v
Model Training

1
1
1
]
'
Predictive Model Testing |
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Predicted PBA Timing

[ICCD'18, A. B. Kahng, Using machine learning to predict path-
based slack from graph-based timing analysis]

€ Application: MLParest provides an accurate

estimate of expected post-layout interconnect
parasitics in the pre-layout design phase

€ ML models: RF
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[DAC'20, B. Shook, MLParest: Machine learning based 10
parasitic estimation for custom circuit design]
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Pre-Routing Path Delay Framework

Problems:
* Neglect of the delay correlation along the path

* Prediction error accumulation and computational complexity increase

An efficient and accurate pre-routing path delay prediction framework is proposed in this
work by employing transformer network and residual model.

* Sequence features at placement stage
* Transformer network: exploits the correlations through circuit path
* Residual model: calibrate the mismatch between the pre- and post-routing path delay

* Without additional computation

11



Pre-Routing Path Delay Framework
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Framework: feature selection
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Input features
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Framework: data pre-process

Input features
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Framework: “pre-routing path delay”
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“Pre-routing path delay”
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Framework: transformer encoder
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Transformer encoder[17°NIPS]
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Input embedding and position
encoding: consider cell positions
information in a data path

Multi-head attention: most
important

Feed Forward: performed In
parallel

Add and normalization: solved
the problem of vanishing and
exploding gradients

16

[17°NIPS] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, I. Polosukhiri, )
“Attention is all you need,” in Advances in neural information processing systems, pp. 5998-6008, 2017.



Framework: attention mechanism
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Framework: data dimension reduction
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Dimension reduction and data
concatenation

Predict the residual value and add it
to the pre-routing path delay
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Experiment setup

Results

* Framework implementation:

Python, keras

* [SMC 28nm technology

Circuits:

3 seen circuits, randomly divide training and test sets

2 unseen Circuits ,

5 circuits

all of them are test sets

Circuit Statistics
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Circuits | # Train | # Test | #cell #net | category
ckt #1 40791 | 17483| 10154| 18892| seen
ckt #2 93786 | 40194 | 234391 | 340004 | seen
ckt #3 16099 6900| 37958| 511/7/5| seen
ckt #4 0| 16998 6667 9072 | unseen
ckt #5 0| 23785| 11830, 15170| unseen
Total | 150676| 105360| 301000 | 434312

19
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Results
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Accuracy Comparison:

24X

EEn S Seen | Unseencit_
| == et Jox 3.12% rRMSE <1 .68% <3.12%
iy | 1:68% Compared with ~ ~
1.1X“& RF, reduced by 2.3X~0X 24X~2.1X

Compared with

CNN, reduced by 1.7X~2.9X 1.1X~1.5X

Residual model
ckt #1 cki #2 ckt #3 ckt #4 ckt #5 >30% >10%

designs benefits

Error distribution of different models on
seen and unseen designs.
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1 W RF
s CNN

I transformer w/o residual

S Seencia | Unseen okt

rRMSE <1.68% <3.12%

Compared with
RF, reduced by

Compared with
CNN, reduced by

I ransformer w/ residual

2.7X3 6X

2.3X~5X 24X~2.7X

1.7X~2.9X 1.1X~1.5X

Residual model
ckt #1 cki #2 ckt #3 ckt #4 ckt #5 >30% >10%

designs benefits

Error distribution of different models on
seen and unseen designs.

21



rRMSE (%)

Results

%t%’k'\?

SOUTHEAST UNIVERSITY

Accuracy Comparison:

24X

1 W RF
s CNN

I transformer w/o residual

S Seencia | Unseen okt

rRMSE <1.68% <3.12%

Compared with
RF, reduced by

Compared with
CNN, reduced by

I ransformer w/ residual

2.7X3 6X

2.3X~5X 24X~2.7X

1.7X~2.9X 1.1X~1.5X

Residual model
ckt #1 cki #2 ckt #3 ckt #4 ckt #5 >30% >10%

designs benefits

Error distribution of different models on
seen and unseen designs.

22



rRMSE (%)

% * ]
~» ‘% \ “g
SOUTHEAST UNIVERSITY

Results

Accuracy Comparison:
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Results

Accuracy Comparison:

EEE RF CNN translormer w/o residual B wranslormer w/ residual
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Mismatch distribution of different models.
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Results

Runtime Comparison

Runtime analysis
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Prediction Runtime (s)

Model ckt #1 ckt #2 ckt #3 ckt #4 ckt #5
CTS 1378 31896 109 193 620
. Routing 1818 411968 143 254 816
Traditional —
IC flow 655 1608 276 680 951
(PT)
Total 3851 AA5477 528 1127 2387
RF 11.2 26.5 10.6 15.7 28.4
CNN 1.28 2.68 0.57 1.22 1.66
This work 1.02 2.16 0.40 1.02 1.38
(3775X) | (206237X) | (1320X) | (1105X) | (1730X)
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Conclusion
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An efficient and accurate pre-routing path delay prediction framework is
proposed in this work by employing transformer network and residual model.

Transformer network: exploits the correlations of the timing and physical information
through circult path by its multi-head self-attention mechanism

Residual model: calibrate the mismatch between the pre- and post-routing path delay

e More accurate and less runtime

26



%t%’k'ﬂg

o S SOUTHEAST UNIVERSITY

THANKS
Q&A

Tai Yang, Guoqging He, Peng Cao

National ASIC System Engineering Technology Research Center, Southeast University,
Nanjing, China

caopeng@seu.edu.cn
ASP-DAC2022




