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Static Timing Analysis (STA)
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Critical Paths Searching in STA

Long Signal Path
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) Top-k longest paths

Short Signal Path

Hold —° Q‘VD .
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Input: Circuit graph, k Real case STA: k= 10,000 ~ 100,000
Output: Top-k shortest paths



The State-of-the-art K-Shortest Path Algorithm

Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]
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The State-of-the-art K-Shortest Path Algorithm
Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]
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The Burden for Suffix-Prefix Algorithm

= n = #Pins + #Edges, k = #Paths
= Step 1: Build the suffix tree

Source \ Destination

= Step 2: Search for top-k paths
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Time
Complexity
Expected:
O(n) ~Olk+n)
on acyclic graph This work
Total:
o0 O(kn Iogn*

Deviation Deviation
edge 1 edge 2

oro” Each exploration: PR
/ l\ ,/ \ at most O(n) deviation edges (D)



Our Contributions

= A novel k-shortest path searching algorithm that runs in
O(nlogn + klogk), asymptotically lower than baselines O(knlogn).

™ [ncorporating persistent mergeable heaps to store all path
deviations for fast merging and duplicating.

= Introducing a novel deviation preprocessing step to precompute
path deviations and speed up path searching.




n Motivation: Pre-computing for Future Use

Step 1: Step 2:
Suffix tree Prefix tree
Deviation Deviation
SW “ Destination k * ed(:gﬂe‘l /e‘dng /‘
Each exploration:  at most O(n) deviation edges
Baseline O(n) = O(kn logn)
0O Prepare Use
Lfr deviation precomputed
Algorithm  edges edges Overall:

O(nlogn) O(klogk)  O(nlogn+klogk)



The Building Block: Persistent Mergeable Heaps
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Copying
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Ordinary Persistent

Heaps Mergeable Heaps
(e.g. Binary heap) (e.g. Leftist tree)
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Magic Behind Leftist-Tree: Persistency

Copying in constant time??

6@“ Version 2’
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Insert @~ & Delete Delete Qﬁ >‘C
Memory — » p — O —>
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between DR |
instances Version 0 Version 1 Version 2 Version 3

All old versions kept

Copy data structure < doing NOTHING (only keep the old version pointer), O(1)



Our Algorithm (1/2): Deviation Preprocessing

Destination Destination Destination
0 Heap(a) =
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BFS on suffix tree and build up heaps => O(nlogn)



Our Algorithm (2/2): Efficient Path Searching
0»Q Overall: O(nlogn+klogk)
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Each exploration: O(n) deviation edges, but only 1 preprocessed heap
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Experimental Results

= Implementation on On benchmark 1eon2: 4M pins Time (ms)
OpenTimer
®» 7 .1GHz Intel Xeon &
512GB mem Ours 1481 5476 19472
= Compared with: OpenTimer 4469 218463 1009337
— OpenTimer
Speed-up 3x 39x 51x

— CPU version of the
suffix forest algorithm

[Guo, ICCAD'21] Suffix forest 1441 6834 34572

= On: TAU 2015
benchmarks Speed-up 0.97x 1.24x 1.77x



Conclusions and Future Work

™ Near linear-time O(nlogn + klogk) ™ Path constraints
novel k-shortest path searching

, ®» GPU acceleration
algorithm

®» Common path pessimism removal

= persistent mergeable heaps and (CPPR)

deviation preprocessing step to
precompute path deviations and

speed up path searching.

» ]1.7~50x faster than OpenTimer
and other baselines.
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Thanks!
Questions are welcome

Website: https://guozz.cn
Email: gzz@pku.edu.cn



