)

S
B

:; ;)Q:,vf 5. 2 97 U{JHRIIVERSITY
KING UNIVERS OF UTAH®

Efficient Critical Paths Search

x Algorithm using Mergeable Heap

\

O

;

Kexing Zhou*?, Zizheng Guo*?!, Tsung-Wei Huang?, Yibo Lin?
1CS Department, Peking University; 2ECE Department, University of Utah

gzz@pku.edu.cn https://guozz.cn

mailto:gzz@pku.edu.cn
https://guozz.cn/

Static Timing Analysis (STA)

Circuit Static Timing Analysis Timing —>
Design (STA) Violations =™
~ 10M+ Gates, ~10min~1hour+

Nets and Pins

Hardware
Description

Runtime

Correctness

Performance

Fast and Accurate

STA Engine!

Physical Design

— e e e e e e e e e - - e - - - - - - - - - = — — — — -

Synthesis —» Placement

—» \erification —

;

STA

““““ ooy

STA

Circuit
Layout

Critical Paths Searching in STA

Long Signal Path

Setup - Q‘DO;D—‘DO—_}D Ql—

Violation P> Clk

> Clk

[> (+T)

) Top-k longest paths

Short Signal Path

Hold —° Q‘VD .

Violation) Top-k shortest paths

Input: Circuit graph, k Real case STA: k= 10,000 ~ 100,000
Output: Top-k shortest paths

The State-of-the-art K-Shortest Path Algorithm

Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]

Source Destination Source Destination

Circuit Graph Suffix Tree

Destination Source _() Destination
| X o X Length
AO—F .Q/ = [Shortest path len]
» Source Destination
Deviation Tree edge () Deviation Length

-2 COStq_ = [Shortest path len]
+ [Deviation cost]

Path & The set of deviation edges on the path{ & -»0O, ... }

edge

The State-of-the-art K-Shortest Path Algorithm
Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]

o>
o” \ O Root
W 4
Q ! Q
Q .
. / ‘\ v L Prefix Tree
Q © Node ¢ k-Shortest Paths
G O |2 3 Edge < Deviation Edges

NN
[\

k=4, Finished

The Burden for Suffix-Prefix Algorithm

= n = #Pins + #Edges, k = #Paths
= Step 1: Build the suffix tree

Source \ Destination

= Step 2: Search for top-k paths

O-N\ O Root k* /v\

2

B O(kn IOgn) Large? \ Large?

1

4

REERVANY

2 3

@)

Time
Complexity
Expected:
O(n) ~Olk+n)
on acyclic graph This work
Total:
o0 O(kn Iogn*

Deviation Deviation
edge 1 edge 2

oro” Each exploration: PR
/ l\ ,/ \ at most O(n) deviation edges (D)

Our Contributions

= A novel k-shortest path searching algorithm that runs in
O(nlogn + klogk), asymptotically lower than baselines O(knlogn).

™ [ncorporating persistent mergeable heaps to store all path
deviations for fast merging and duplicating.

= Introducing a novel deviation preprocessing step to precompute
path deviations and speed up path searching.

n Motivation: Pre-computing for Future Use

Step 1: Step 2:
Suffix tree Prefix tree
Deviation Deviation
SW “ Destination k * ed(:gﬂe‘l /e‘dng /‘
Each exploration: at most O(n) deviation edges
Baseline O(n) = O(kn logn)
0O Prepare Use
Lfr deviation precomputed
Algorithm edges edges Overall:

O(nlogn) O(klogk) O(nlogn+klogk)

The Building Block: Persistent Mergeable Heaps

opw;“o%
B o, £
H=db S

U s
07 C "40

Insertion

Deletion
(largest element)

Copying

Merging

Ordinary Persistent

Heaps Mergeable Heaps
(e.g. Binary heap) (e.g. Leftist tree)
O(logn) O(logn)

O(logn) O(logn)

O(n) O(1)

O(n) O(logn)

Magic Behind Leftist-Tree: Persistency

Copying in constant time??

6@“ Version 2’

\(\/
Insert @~ & Delete Delete Qﬁ >‘C
Memory — » p — O —>
shared ()
between DR |
instances Version 0 Version 1 Version 2 Version 3

All old versions kept

Copy data structure < doing NOTHING (only keep the old version pointer), O(1)

Our Algorithm (1/2): Deviation Preprocessing

Destination Destination Destination
0 Heap(a) =

Deviation {edge 1 } Deviation

Deviation

o edge 1 edge 1 v edge
Dec\j”atlzn Deviation J Deviation 9
edge .. 4 4

3 Deviation edgci Deviation edgci Deviation

3 edge 2 edge 2 - ..¥ edge?
Deviation Deviation Deviation

¥ edge3 edge 3 Heap(b) = ¥ edge3

{edge 2} u ©
Suffix Tree Suffix Tree Heap(a) X Tree

BFS on suffix tree and build up heaps => O(nlogn)

Our Algorithm (2/2): Efficient Path Searching
0»Q Overall: O(nlogn+klogk)

@, 5 O Root k * /j —O(kIng ’ I

1

Q '/Q‘\\Q‘o\ Preprocessing: O(nlogn)
° © Heap of

unexplored nodes { ’ ; }

~

Each exploration: O(n) deviation edges, but only 1 preprocessed heap

Deviation Deviation
Heap(a) = {edge 1 ’ edge1 edge?2

edge 2, } (>—>/ (>—>/ "'(/>—>(/) Destination Merge!
O(logk)

Experimental Results

= Implementation on On benchmark 1eon2: 4M pins Time (ms)
OpenTimer
®» 7 .1GHz Intel Xeon &
512GB mem Ours 1481 5476 19472
= Compared with: OpenTimer 4469 218463 1009337
— OpenTimer
Speed-up 3x 39x 51x

— CPU version of the
suffix forest algorithm

[Guo, ICCAD'21] Suffix forest 1441 6834 34572

= On: TAU 2015
benchmarks Speed-up 0.97x 1.24x 1.77x

Conclusions and Future Work

™ Near linear-time O(nlogn + klogk) ™ Path constraints
novel k-shortest path searching

, ®» GPU acceleration
algorithm

®» Common path pessimism removal

= persistent mergeable heaps and (CPPR)

deviation preprocessing step to
precompute path deviations and

speed up path searching.

»]1.7~50x faster than OpenTimer
and other baselines.

LT > THE
ﬂtf.akﬁ UUNIVERSITY
iss/ PEKING UNIVERSITY OF UTAH®

Thanks!
Questions are welcome

Website: https://guozz.cn
Email: gzz@pku.edu.cn

