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Critical Paths Searching in STA3
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The State-of-the-art K-Shortest Path Algorithm4
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The State-of-the-art K-Shortest Path Algorithm5
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The Burden for Suffix-Prefix Algorithm6

´n = #Pins + #Edges,    k = #Paths

´Step 1: Build the suffix tree

´Step 2: Search for top-k paths
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Our Contributions7

´A novel k-shortest path searching algorithm that runs in   
O(nlogn + klogk), asympto>cally lower than baselines O(knlogn).

´Incorpora>ng persistent mergeable heaps to store all path 
devia>ons for fast merging and duplica>ng.

´Introducing a novel devia6on preprocessing step to precompute 
path devia>ons and speed up path searching.



Motivation: Pre-computing for Future Use8
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The Building Block: Persistent Mergeable Heaps9
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Magic Behind Leftist-Tree: Persistency10
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Our Algorithm (1/2): DeviaLon Preprocessing11
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Our Algorithm (2/2): Efficient Path Searching12
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Experimental Results13

´ Implementation on 
OpenTimer

´ 2.1GHz Intel Xeon & 
512GB mem

´ Compared with:
– OpenTimer

– CPU version of the 
suffix forest algorithm 
[Guo, ICCAD'21]

´ On: TAU 2015 
benchmarks

On benchmark leon2: 4M pins    Time (ms)

k= 100 100,000 1,000,000

Ours 1481 5476 19472

OpenTimer 4469 218463 1009337

Speed-up 3x 39x 51x

Suffix forest 1441 6834 34572

Speed-up 0.97x 1.24x 1.77x



Conclusions and Future Work14

´Near linear-time O(nlogn + klogk)
novel k-shortest path searching 
algorithm 

´persistent mergeable heaps and 
deviation preprocessing step to 
precompute path deviations and 
speed up path searching.

´1.7~50x faster than OpenTimer
and other baselines.

´Path constraints

´GPU acceleration

´Common path pessimism removal 
(CPPR)
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