
Efficient Critical Paths Search
Algorithm using Mergeable Heap

Kexing Zhou*1, Zizheng Guo*1, Tsung-Wei Huang2, Yibo Lin1

1CS Department, Peking University; 2ECE Department, University of Utah

gzz@pku.edu.cn https://guozz.cn

mailto:gzz@pku.edu.cn
https://guozz.cn/

Static Timing Analysis (STA)2

Hardware
Description Synthesis Placement Routing Verification

Physical Design

Circuit
Layout

STA STA STA STA

Static Timing Analysis
(STA)

Circuit
Design

Timing
Violations

Correctness

Performance

📈10M+ Gates,
Nets and Pins

📈10min~1hour+
Runtime

Fast and Accurate
STA Engine!

Critical Paths Searching in STA3

D

Clk

Q D

Clk

Q

Long Signal Path

(+T)

D

Clk

Q D

Clk

Q

Short Signal Path
Top-k longest paths

Top-k shortest paths

Setup
Violation

Hold
Violation

Input: Circuit graph, k
Output: Top-k shortest paths

Real case STA: k = 10,000 ~ 100,000

The State-of-the-art K-Shortest Path Algorithm4

Source Destination

Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]

Circuit Graph Suffix Tree

Source Destination

Source Destination

Tree edgeDeviation
edge

Source Destination

Length
= [Shortest path len]

Source Destination
Length
= [Shortest path len]

+ [Deviation cost]

Deviation
cost

Path ó The set of deviation edges on the path { , … }

The State-of-the-art K-Shortest Path Algorithm5

Root

1

2 3

4

k=4, Finished

⬅ Prefix Tree
Node ó k-Shortest Paths
Edge ó Deviation Edges

Suffix Tree - Prefix Tree Algorithm [OpenTimer, TCAD'20] [Guo, ICCAD'21]

The Burden for Suffix-Prefix Algorithm6

´n = #Pins + #Edges, k = #Paths

´Step 1: Build the suffix tree

´Step 2: Search for top-k paths

Source Destination

1

Root

2 3

4

O(n)
on acyclic graph

k *
2

4

Each exploration:
at most O(n) deviation edges

…

Deviation
edge 1

Deviation
edge 2

= O(kn logn)

Total:
O(kn logn)

Large? Large?

Expected:
~O(k+n)

This work

Time
Complexity

Our Contributions7

´A novel k-shortest path searching algorithm that runs in
O(nlogn + klogk), asympto>cally lower than baselines O(knlogn).

´Incorpora>ng persistent mergeable heaps to store all path
devia>ons for fast merging and duplica>ng.

´Introducing a novel devia6on preprocessing step to precompute
path devia>ons and speed up path searching.

Motivation: Pre-computing for Future Use8

Source Destination

O(n)

k *

Each exploration:

…

Deviation
edge 1

Deviation
edge 2

= O(kn logn)
at most O(n) deviation edges

Prepare
deviation
edges

Use
precomputed
edges

O(nlogn) O(klogk)
Overall:
O(nlogn+klogk)

Step 1:
Suffix tree

Step 2:
Prefix tree

Baseline

Our
Algorithm

The Building Block: Persistent Mergeable Heaps9

+ =
Largest
Element

=! +

∪ =

=!

Insertion

Deletion
(largest element)

Copying

Merging

Ordinary
Heaps
(e.g. Binary heap)

O(logn)

O(logn)

O(n)

O(n)

Persistent
Mergeable Heaps
(e.g. Leftist tree)

O(logn)

O(logn)

O(1)

O(logn)

Magic Behind Leftist-Tree: Persistency10

Copying in constant time??

All old versions kept

Delete

Version 2

Delete

Version 3

Insert

Version 1

Memory
shared

between
instances Version 0

Insert Version 2’

Copy data structure ó doing NOTHING (only keep the old version pointer), O(1)

Our Algorithm (1/2): DeviaLon Preprocessing11

r

Destination

a

bd

c

Deviation
edge 1

Deviation
edge 2

Deviation
edge 3

Deviation
edge 4

Suffix Tree

r

Destination

a

bd

c

Deviation
edge 1

Deviation
edge 2

Deviation
edge 3

Deviation
edge 4

Suffix Tree

r

Destination

a

bd

c

Deviation
edge 1

Deviation
edge 2

Deviation
edge 3

Deviation
edge 4

Suffix Tree

Heap(a) =
{edge 1}

Heap(b) =
{edge 2} ∪
Heap(a)

BFS on suffix tree and build up heaps => O(nlogn)

Our Algorithm (2/2): Efficient Path Searching12

Root

1
k *

2

4

Each exploration: O(n) deviation edges, but only 1 preprocessed heap

= O(klogk)

a
…

Deviation
edge 1

Deviation
edge 2

Destination

Heap(a) = {edge 1,
edge 2, …}

{ , , }Heap of
unexplored nodes

Merge!
O(logk)

Preprocessing: O(nlogn)

Overall: O(nlogn+klogk)

Experimental Results13

´ Implementation on
OpenTimer

´ 2.1GHz Intel Xeon &
512GB mem

´ Compared with:
– OpenTimer

– CPU version of the
suffix forest algorithm
[Guo, ICCAD'21]

´ On: TAU 2015
benchmarks

On benchmark leon2: 4M pins Time (ms)

k= 100 100,000 1,000,000

Ours 1481 5476 19472

OpenTimer 4469 218463 1009337

Speed-up 3x 39x 51x

Suffix forest 1441 6834 34572

Speed-up 0.97x 1.24x 1.77x

Conclusions and Future Work14

´Near linear-time O(nlogn + klogk)
novel k-shortest path searching
algorithm

´persistent mergeable heaps and
deviation preprocessing step to
precompute path deviations and
speed up path searching.

´1.7~50x faster than OpenTimer
and other baselines.

´Path constraints

´GPU acceleration

´Common path pessimism removal
(CPPR)

Thanks!
Questions are welcome

Website: https://guozz.cn
Email: gzz@pku.edu.cn

