

Vector-based Dynamic IR-drop Prediction Using Machine Learning

Authors: Jia-Xian Chen, Shi-Tang Liu, Yu-Tsung Wu, Mu-Ting Wu, Chien-Mo Li, Norman Chang, Ying-Shiun Li, Wen-Tze Chuang Presenter: Yu-Tsung Wu

Lab of Dependable Systems (LaDS) Graduate Institute of Electronics Engineering National Taiwan University

Vector-based Dynamic IR-drop

Many vectors, long analysis time

B19 as example

Around 1900 vectors, around 4000s for one vector

□ Need to speedup IR-drop analysis

IR-drop

□ Include V_{DD}-drop and ground bounce

Degrade performance and cause system failure
Test issues

- Power is larger in test mode than in normal mode
- Some test vectors induce large IR-drop
 - IR risky vectors
- Overkill on good chips

Dynamic IR-drop Analysis

Vectorless [Lin 03]

- Determine transitions based on toggle probability
- Without testbench, no vector input
- Pessimistic

Vector-based

- Assign transitions recorded in waveform to cells
- Input vector
- Too many vectors
- Long runtime to perform dynamic IR-drop analysis

Previous Work

Predict dynamic IR-drop for each cells [Fang 18]

- Consider floorplan (neighbor cell feature)
- Vectorless

Predict average dynamic IR-drop of tile [Xie 20]

- Vector-based
- Cannot predict the IR-drop value of each cell

[Fang 18] Fang, Yen-Chun, et al. "Machine-learning-based dynamic IR drop prediction for ECO." Proceedings of the International Conference on Computer-Aided Design. 2018. [Xie 20] Xie, Zhiyao, et al. "PowerNet: Transferable dynamic IR drop estimation via maximum convolutional neural network." 2020 25th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2020.

Motivations & Goals & Key results

Motivations

- Long runtime of vector-based dynamic IR-drop analysis
- No good methods to identify IR-drop risky vectors

Goals

- Predict vector-based dynamic IR-drop for all cells
- Identify IR-drop risky vectors quickly

Key results

- Mean absolute error (MAE) of IR-drop predictor is less than 3% of supply voltage
- 495x speedup compared to commercial tool
- Identify 70% IR-drop risky vectors

Outline

Introduction & Background

Proposed Technique

Experimental Results

Conclusion

Our Proposed Flow

Training Phase Prediction Phase Circuit **Vector Set B.** Raw Features Extraction A. Vector Selection C. Density Map Features Creation **Dynamic IR-drop Analysis** Machine Learning (Prediction) **B.** Raw Features Extraction C. Density Map Features Creation **IR-drop Signoff Criteria** Machine Learning (Training) **Trained Model IR-drop Safe Vector Set**

A. Vector Selection

Need representative vectors to train model Use total toggle counts to select vectors

Step 1. Sort vectors into bins by total toggle counts Step 2. Select one representative vector from each bin

B. Raw Features Extraction

Vector-independent features (VI)

- Not change with input vector
- e.g. shortest path resistance, physical location

Vector-dependent waveform features (VDW)

- Change with input vector
- Extract from logic simulation waveform

Vector-dependent power features (VDP)

- Change with input vector
- Perform power analysis

Vector-Dependent Waveform Features

Toggle count of input, *TC_{input}* Toggle count of output, *TC_{output}* Toggle count of internal connection, *TC_{internal}* Minimum arrival time, *T_{arrival}* Time of first signal transition at output

Vector-Dependent Power Features

Internal power

Power dissipated within the cell

Switching power

Power dissipated by charging of load capacitance

Transition time

- Duration of output transition
- Peak current

Use density map features

- IR-drop is a local effect
- Provide local information around a target cell

- Use raw features, Toggle count of input as example
- **1.** Divide circuit into partitions **2.** Sum up the TC_{input} of cells in each partition

Constant feature dimension

- Not change with circuit size
- Each selected raw feature creates 13 density map features
 - **3.** Add neighbor partitions into the feature set of target cell

		1		
	2	3	4	
5	6	Target	Q	g
	U	Partition	0	<u> </u>
	10	Partition 11	12	,
	10	Partition 11 13	12	

Outline

- Introduction & Background
- Proposed Technique
- **Experimental Results**
- Conclusion

Setup

Profile of circuit designs

Circuit Design	# cells	# vectors	Mean IR-drop (mV)	Max IR-drop (mV)	Runtime of IR-drop analysis (s)	
MEMC	223,829	187	248.67	402.72	7,224	
b19	347,049	1,953	183.87	565.34	4,785	
leon3mp	1,049,484	3,558	219.03	467.68	24,210	

Supply voltage: 0.95V, Cell library: NanGate 45-nm

Perform IR-drop analysis

Redhawk-SC

Machine learning model

- XGBoost [Chen 16]
- Use 8 raw features in density map creation

[Chen 16] Tianqi Chen, et al. "Xgboost: A scalable tree boosting system." In *Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining*

Golden versus Predicted IR-drop Map

Very similar

Density Map Features Important

Mean absolute error (MAE)

Error between predicted IR-drop and golden IR-drop

Correlation coefficient (CC)

- Measure of linear correlation between predicted IR-drop and golden IR-drop
- Value between -1 to 1,1 implies perfect linear correlation

Raw+Density performs better than Raw

Design	ME	MC	b	9	leon3mp		
	Raw	Raw	Raw	Raw	Raw	Raw	
Metrics		+Density		+Density		+Density	
MAE(mV)	26.37	19.47	43.06	25.91	13.65	12.29	
CC	0.45	0.66	0.34	0.79	0.73	0.83	

UVI+VDW performs well as VI+VDP

		MEMC			b19		leon3mp		
Design	VI+	VI+	VI+						
	VDW	VDP	VDW+	VDW	VDP	VDW+	VDW	VDP	VDW+
Metrics			VDP			VDP			VDP
MAE(mV)	19.47	15.77	15.76	25.91	30.61	30.19	12.29	14.39	13.06
CC	0.66	0.81	0.78	0.79	0.71	0.71	0.83	0.87	0.82

VI: vector-independent features VDW: vector-dependent waveform features VDP: vector-dependent power features

DVector selection is important

Long runtime in IR-drop analysis for training labels
 UI+VDW has at least 495x speedup ratio

Faster than VI+VDP

	MEMC			b19			leon3mp		
Stage	VI+ VDW	VI+ VDP	VI+ VDW+ VDP	VI+ VDW	VI+ VDP	VI+ VDW+ VDP	VI+ VDW	VI+ VDP	VI+ VDW+ VDP
IR-drop analysis for training labels(s)	130k			86k			435k		
Total training time(s)	132k	131k	132k	89k	89k	89k	442k	443k	443k
Total prediction time(s)	6.5	532.6	535.2	1.8	77.6	78.1	3.8	492.0	493.3
IR-drop analysis(s)	3,227			1,378			2,306		
Speedup ratio	495	6	6	778	17	17	600	4	4

IR-drop Risky Vector Identification

IR-drop risky vector:

Average IR-drop of 5% worst cells is large than 310 mV

Extra modifications:

One MAE as guard band

Identify 70% IR-drop risky vectors

Outline

- Introduction & Background
- Proposed Technique
- **Experimental Results**
- Conclusion

Conclusion

 Predict vector-based IR-drop using Machine Learning with VI+VDW features
 MAE of IR-drop predictor is 3% supply voltage
 495x speedup compared to commercial tool
 Identify 70% IR-drop risky vectors

Thank You!