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SONIC: A Sparse Neural Network Inference 
Accelerator with Silicon Photonics for Energy-

Efficient Deep Learning



Emerging ML Applications

• ML applications are becoming increasingly complex

• Some examples:

• Object detection in autonomous vehicles
• J. Dey, W. Taylor, and S. Pasricha, , “VESPA: Optimizing Heterogeneous Sensor Placement and 

Orientation for Autonomous Vehicles”, IEEE Consumer Electronics, Mar 2021.

• Natural language processing
• Google Assistant, Apple’s SIRI

• Deep learning models and optimizations for IoT applications
• S. Tiku and S. Pasricha, “Overcoming Security Vulnerabilities in Deep Learning Based Indoor 

Localization on Mobile Devices”, ACM TECS, Jan 2020.

• Inference acceleration is becoming crucial

• For energy- and resource-constrained platforms executing 
real-time embedded and IoT applications

• Domain-specific ML hardware accelerators are preferred 

• Provide energy and throughput benefits over GPUs and CPUs
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Accuracy vs computational complexity in DNN models 

[S. Bianco et al., IEEE Access, vol. 6, Oct. 2018]



Sparsity in Neural Networks

• Sparsity in neural networks refers to presence of weight 
parameters which are zero valued

• Allows for reducing number of neurons and synapses 
without impacting accuracy

• An optimization method to reduce resource requirements, 
while maintaining good inference accuracy

• Sparse Neural Networks (SpNNs) should enable lower 
memory and computation requirement, BUT:

• To obtain the reduced computation benefits from SpNNs, 
specialized hardware is necessary

• Optimizations for Dense Neural Network (DNNs) does not 
make use of available sparsity in SpNNs
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There is a need for specialized hardware to accelerate 

SpNNs while making use of the available sparsity



ML Acceleration Hardware
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SpNN Accelerators

• S. Zhang et al., in MICRO, 2016
• Electronic SpNN accelerator with custom instruction set 

architecture (ISA)
• Specialized buffer controllers with indexing to keep track of 

sparse elements

• W. You, C. Wu, in IEEE Access, vol. 9, Jan. 2021
• Software-hardware co-optimized reconfigurable sparse CNN 

accelerator 
• Proposed for FPGAs

• Exploited both inter- and intra-output feature map parallelism
• Kernel merging along with structured sparsity considered to 

improve overall efficiency

• A. Aimar et al., in IEEE Trans. Neural Netw. Learn. Syst, vol. 30, 
no. 3, Mar. 2019

• FPGA-based implementation of a sparse CNN accelerator
• Made use of an output feature-map compression algorithm
• The accelerator operated directly on compressed data
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But electronic accelerators face the fundamental limitations 

due to slowdown of Dennard scaling



Silicon Photonics for ML Acceleration

• Large fan-in and fan-out possible for linear 
algebra processing

• Energy efficient data transfer by using 
optical transceivers

• Low power or passive implementations of 
complex operations

• Low power multiplication 

• Passive Fourier transforms

• Fast rate of operation

• Theoretical limit 100 GHz (photodetection rate)

• Lower latency than electronic processing

• Increasing commercial interest
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Lightmatter ENVISE for general purpose AI inference acceleration

Silicon nano-photonic ANN accelerator prototype from Y. Shen et 

al., Nature Photonics, 2017

Silicon Photonic ANN accelerators have the potential to overcome 
the limitations electronic accelerators face due to  Dennard scaling



Computation Using Photonics

• Option 1: Coherent computation
• Single wavelength

• Weights represented using electrical field amplitude 

• Challenges

• Scalability issues

• Phase encoding noise

• Phase error accumulation

• Option 2: Noncoherent computation
• Multiple wavelengths used simultaneously

• Phase-change in devices used to imprint 
weight/activation values on signal intensities 

• Advantages

• Smaller footprints

• Multiple wavelengths enabling large number of 
neurons to be represented simultaneously
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LD: laser diode; PD: Photo diode; MZM: Mach Zehnder Modulator;
IQ modulation: In-phase and Quadrature modulation

BPD: Balanced PD; AWG: Arrayed Waveguide Grating; 
MUX: Multiplexer; MR: Microring Resonator

MR

Non-coherent computation used in our work for smaller footprints 
and ability to handle larger number of parameters simultaneously 



Noncoherent Architectures

• Utilizes the mature wavelength division multiplexing (WDM)/Dense WDM technology to 
represent large number of neurons

• Weight values are imprinted onto the wavelength amplitude

• Multiplication done by imprinting the activation value onto the signal

• Summation performed in photonic mac units using photodetectors 
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MR

BPD: Balanced PD; AWG: Arrayed Waveguide Grating; MUX: Multiplexer; MR: Microring Resonator



Our Contributions

• SONIC: A novel, sparsity aware, photonic CNN accelerator

• Utilizes a modular, vector granularity-aware structure to enable high throughput and energy-
efficient execution

• Utilizes sparsity-aware data compression and dataflow techniques for fully connected and 
convolution layers

• Comprehensive comparison with state-of-the-art sparse electronic and dense photonic CNN 
accelerator platforms

• SONIC was compared against:

• NVIDIA Tesla P100

• RSNN [W. You, C. Wu, IEEE Access, vol. 9, Jan. 2021]

• Null Hop [A. Aimar et al., IEEE Trans. Neural Netw. Learn. Syst, vol. 30, no. 3, Mar. 2019]

• HolyLight [W. Liu et al., IEEE/ACM DATE, 2019]

• LightBulb [F. Zokaee et al., IEEE/ACM DATE, 2020]

• CrossLight [F. Sunny et al., IEEE/ACM DAC 2020]
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Photonic dense 
CNN accelerators



Model Sparsification and Weight Clustering

• We utilized a layer-wise sparsity-aware training approach for inducing sparsity

• Layer-wise sparsity considered to avoid overly sparsifying layers 

• The weights in chosen layer are sorted by their absolute values and smallest magnitude weights 
are masked to zero until specified sparsity levels are reached

• We opt for sparsity-aware training instead of post-training sparsification, as the latter approach 
can indiscriminately remove neurons

• This can adversely affect inference accuracy

• We performed post-training quantization in the form of weight clustering

• Utilized a centroid based weight clustering approach

• If there are C centroids, and thus C clusters, the model will end up with C unique weights

• Required DAC resolution reduced to log2C

• Reduced DAC resolution enables power and latency savings
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Dataflow Optimizations

• Fully Connected (FC) layer 
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Dataflow Optimizations

• Convolution (Conv) layer 
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SONIC Accelerator Overview
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Electronic Control 

Unit:

(1) fetch model 

parameters from 

global memory; 

(2) decomposing 

matrices to 

vectors; 

(3) mapping 

vectors to the 

photonic 

accelerator;

(4) Applying non-

linearities (post 

processing)

Layer-specific VDP 

unit array forms the 

core of SONIC’s

photonic accelerator 

substrate 

Global buffer specific for 

dense parameter vectors

Global buffer specific for 

sparse parameter vectors



Microring Resonator (MR) Basics and Operations

• MRs are prominently used in Noncoherent Silicon Photonic (SiPh) architectures

• Designed to be selective to a resonant wavelength (𝝀𝑴𝑹)
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Cross-Over Coupling (𝜅) in MRs

• Determines the amount of optical power transferred 
between waveguides

• Cross-over coupling can be defined as a function of

• 𝑘 𝜆𝑀𝑅𝑅, 𝑤𝑤/𝑟 , 𝑡 ∝ 𝑓 𝑛𝑒𝑤/𝑒𝑟 𝜆𝑀𝑅𝑅, 𝑤𝑤/𝑟 , 𝑡 , 𝑔−1, 𝑅
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FPV Induced Resonant Wavelength Shift 
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𝜆𝑀𝑅 =
𝑛𝑒𝑓𝑓𝐿

𝑚
, 𝑚 = 1,2,3…

𝐿 = 2𝜋𝑅

• FPV can also affect the gap distance between waveguides

• Causes change in 𝜆𝑀𝑅, i.e. resonant wavelength shift (Δ𝜆𝑀𝑅)

W. Bogarts et al., Laser Photonics review, vol.6, No.1,2012

𝒏𝒆𝒇𝒇 is a function of 

ring waveguide 
thickness and width

FPV induced 𝚫𝝀𝑴𝑹 causes computation errors in optical 

computing



MR Device Engineering

• Increasing width of input and MR waveguides can help reduce FPV sensitivity

• Causes drop in 𝜿 for conventional MR designs (𝑾𝒘 = 𝑾𝒓)

• We utilize unconventional MR designs (𝑾𝒘 ≠ 𝑾𝒓) for obtaining FPV resilience while 
obtaining upto 40% better 𝜿 than conventional MR designs
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Robust Tuning Approach

• Hybrid Electro-Optic (EO) + Thermo-Optic (TO) 
tuning for reduced latencies

• EO tuning for speed and lower energy consumption 
(Range < 1.5 nm)

• Used to imprint weights and activations on 
wavelengths

• Thermal Eigen mode Decomposition (TED) based 
TO tuning

• To collectively tune all MRs in a VDP and cancel 
thermal crosstalk

• Reduces the effective area and laser power over 
conventional approach
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Vector Dot Product Unit (VDU) Design
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Experiment Setup
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Devices Latency Power

EO Tuning [A. Stefan et al., IEEE JLT, 2016] 20 ns 4 𝜇W/nm

TO Tuning [P. Pintus et al., L&P reviews, 2019] 4 𝜇𝑠 27.5 mW/FSR

VCSEL [R. Ini et al., CICC, 2021] 0.07 ns 1.3 mW

Photodetector [B. Wang et al., IEEE JLT, 2020] 5.8 ps 2.8 mW

16-bit DAC [B. Wu et al., IEEE J. Solid-state circuits, 2016] 0.33 ns 40 mW

6-bit DAC [C. M. Yang et al., IEEE TCAS, 2021] 0.25 ns 3 mW

ADC [J. Shen et al., IEEE J. Solid-state circuits, 2018] 14 ns 62 mW



Model Sparsification and Clustering Results
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Ideal model sparsification 

configuration with respect to 

inference accuracy achieved



Comparison Against Other Accelerators
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SONIC achieves 

better power 

efficiency with 

respect to throughput 

due to the sparsity 

aware hardware and 

software 

optimizations utilized 



Comparison Against Other Accelerators
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SONIC achieves better EPB 

performance against state of the 

art electronic and photonic 

accelerators



Conclusions

• This work presented a novel non-coherent photonic SpNN accelerator, SONIC, that 
integrates several hardware and software optimizations

• SONIC exhibits better performance in terms of power efficiency and EPB against state of the 
art electronic and photonic accelerators

• Up to 5.8× better power efficiency, and 8.4× lower EPB than state-of-the-art electronic 
SpNN accelerators

• Up to 13.8× better power efficiency and 27.6× lower EPB than state-of-the-art dense photonic 
neural network accelerators

• These results demonstrate the promising low-energy and low-latency inference acceleration 
capabilities of our SONIC architecture
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Thank You
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