HAWIS: Hardware-Aware Automated WIdth Search for Accurate, Energy-Efficient and Robust Binary Neural Network on ReRAM Dot-Product Engine

Qidong Tang, Zhezhi He*, Fangxin Liu, Zongwu Wang, Yiyuan Zhou, Yinghuan Zhang and Li Jiang*

Shanghai Jiao Tong University

tangqidong@sjtu.edu.cn

December 11 2021

Qidong Tang HAWIS 1 / 29

Presenter Information

A second-year Master student in Computer Science at the Advanced Computer Architecture Laboratory of SJTU.

Qidong Tang HAWIS 2 / 29

PIM and ReRAM

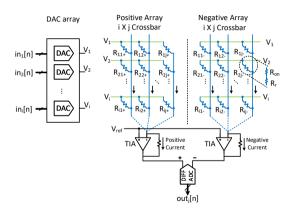


Fig. Hardware implementation of $M \times M$ ReRAM crossbar array pair as an analog dot-product engine.

- 1. ReRAM represents the weight by dividing the resistance range into multiple intervals.
- 2. The input is encoded as binary bit-strings in [n] for crossbar input with DACs.

3.

$$I_k = \sum_{i=1}^{M} \left(\frac{V_i}{R_{ik}^+} - \frac{V_i}{R_{ik}^-} \right)$$

The current is transformed into digital calculation results with ADCs.

Why BNN on ReRAM?

Motivations to deploy BNN (1 bit network) to ReRAM:

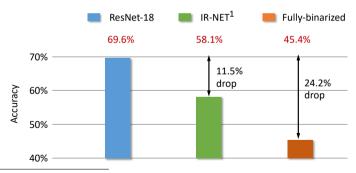
- 1. Simplify the hardware-expensive peripheral circuits (e.g, DAC), which commonly consume a great portion of (> 50%) on-chip area and energy.
- 2. Minimize the storage footprint and reduce the model size by $32 \times$.
- 3. Superior bit error tolerance¹, which inspires us to make use of this capability to overcome the severe device defects in ReRAM, such as resistance variation and Stuck-At-Fault (SAF).

Qidong Tang HAWIS 4 / 29

¹Adnan Siraj Rakin, Zhezhi He e Deliang Fan. "Bit-flip attack: Crushing neural network with progressive bit search". Em: *ICCV*. 2019.

Challenges to deploy BNN on ReRAM?

- 1. Drastic accuracy degradation² (11.5% accuracy drop);
- 2. Applying binarization to the whole network will further lower the accuracy (24.2% accuracy drop).



²Haotong Qin et al. "Forward and backward information retention for accurate binary neural networks". Em: CVPR. 2020.

Qidong Tang HAWIS 5 / 29

Our main idea – searching the width of BNN on ReRAM.

It is effective to widen the quantized network to mitigate the accuracy drop³, ⁴. However, the same expansion ratio across the network leads to model overfitting.

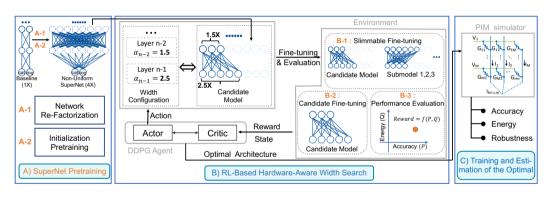
 \Rightarrow Thus we utilize reinforcement learning to determine the specific width layer by layer.

	Res-20 CIFAR10		Res-32 CIFAR10		Res-18 ImageNet	
Model	Energy (μJ)	Acc. (%)	Energy (μJ)	Acc. (%)	Energy (mJ)	Acc. (%)
Quan-8bit	1387	92.2	2349	92.9	66.5	69.8
Uniform-BNN $1 \times$	32.7	81.22	50.6	83.91	3.8	51.92
Uniform-BNN $2 \times$	120	88.95	195	90.22	8.2	63.38
Uniform-BNN $3\times$	238	91.4	393	92.11	15.0	66.57
Uniform-BNN $4 \times$	503	92.17	893	92.49	25.1	68.19
Uniform-BNN $5 \times$	924	92.77	1571	93.00	43.5	69.22
Uniform-BNN $6\times$	1176	92.78	1984	93.07	-	-

³Asit Mishra et al. "WRPN: Wide reduced-precision networks". Em: ICLR (2018).

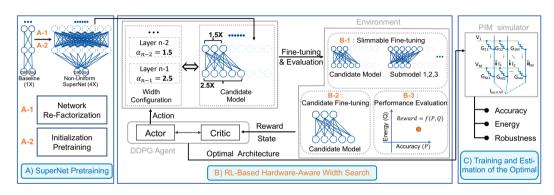
Qidong Tang HAWIS 6 / 29

⁴Mingzhu Shen et al. "Searching for accurate binary neural architectures". Em: ICCV Workshops. 2019.



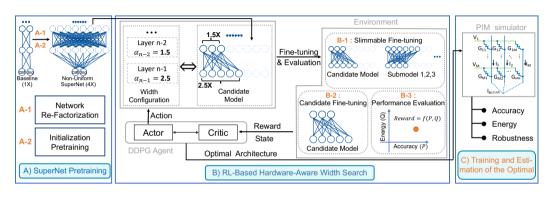
A). Train a binarized super-net.

Qidong Tang HAWIS 7 / 29



- A). Train a binarized super-net.
- B). Leverage reinforcement learning to search for the width layer-by-layer.

Qidong Tang HAWIS 8 / 29



- A). Train a binarized super-net.
- B). Leverage reinforcement learning to search for the width layer-by-layer.
- C). Estimate the accuracy, energy consumption and robustness.

Qidong Tang HAWIS 9 / 29

Binarization Function Insertion to all parametric layers.

Qidong Tang HAWIS 10 / 29

- Binarization Function Insertion to all parametric layers.
- ▶ Topology Modification: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$

- Binarization Function Insertion to all parametric layers.
- ► Topology Modification: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$
- ▶ Two-Side Regularization: $\Omega(w) = \sum_{i} (|w_i| w_0)^2$ $(50.24\% \rightarrow 51.92\%)$

- Binarization Function Insertion to all parametric layers.
- ▶ Topology Modification: remove the avg-pooling. $(45.43\% \rightarrow 50.24\%)$
- ▶ Two-Side Regularization: $\Omega(w) = \sum_{i} (|w_i| w_0)^2$ (50.24% \rightarrow 51.92%)
- ▶ Uniform Layer Width Expansion and Pretraining. Uniformly expand the binarized baseline to create the super-net. Leverage the slimmable training technique to pretrain the super-net.

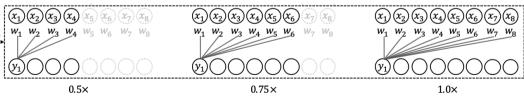
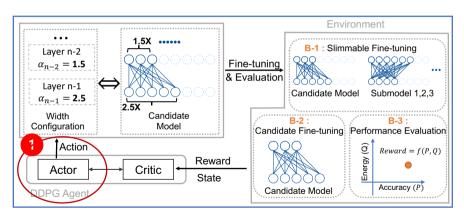


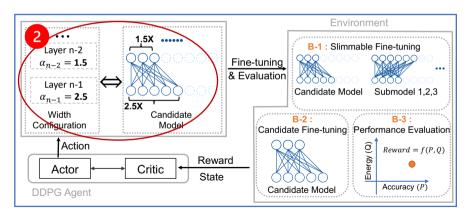
Fig. Slimmable Training Technique.

1. The agent takes the state as input and outputs an action (the width configuration).

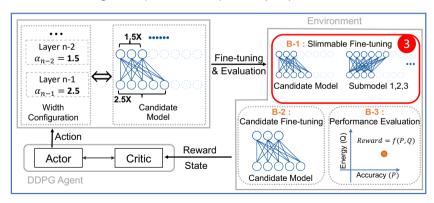


Qidong Tang HAWIS 14 / 29

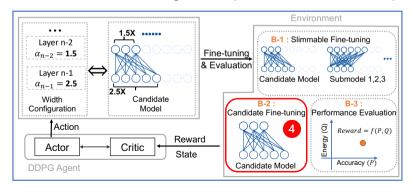
- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.



- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).

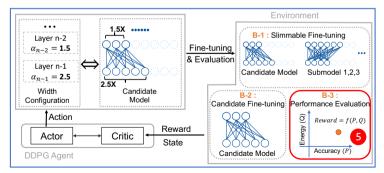


- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).

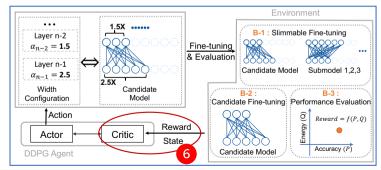


Qidong Tang HAWIS 17 / 29

- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).
- 5. Performance evaluation estimates the accuracy and energy consumption (B-3).



- 1. The agent takes the state as input and outputs an action (the width configuration).
- 2. A candidate model w.r.t the current width configuration is generated.
- 3. Slimmable fine-tuning first updates the super-net (B-1).
- 4. The candidate is initialized according to the super-net and fine-tuned few epochs (B-2).
- 5. Performance evaluation estimates the accuracy and energy consumption (B-3).
- 6. The reward is returned to update the agent and generate actions in the successive episode.



Qidong Tang HAWIS 19 / 29

1. Problem Formulation:

 $A_{\rm b}$ — binarized baseline;

 $\mathcal{B}_{\rm b}$ — sampled sub-net during the search.

$$\mathcal{R} = - \overbrace{\mathsf{Error}\left(\mathcal{B}_{\mathrm{b}}^{*}(\hat{\boldsymbol{\theta}}), \mathsf{X}_{\mathrm{eval}}\right)}^{\mathsf{Accuracy}} \cdot \underbrace{\mathsf{log} \frac{Q\left(\mathcal{B}_{\mathrm{b}}^{*}(\hat{\boldsymbol{\theta}})\right) / \lambda}{Q\left(\mathcal{A}_{\mathrm{b}}\right)}}_{\mathsf{Energy}} \tag{1}$$

Qidong Tang HAWIS 20 / 29

2. State Space:

$$m{s}_l = (l, l_{
m s}, c_{
m in}, c_{
m out}, n_{
m ker}, n_{
m str}, n_{
m param}, n_{
m fmap}, a_{l-1}, c_{l-1})$$
 $l, l_{
m s}$ — layer/block index;
 $c_{
m in}, c_{
m out}$ — #(input/output channels);
 $n_{
m ker}, n_{
m str}$ — kernel/stride size;
 $n_{
m param}$ — #(parameter);
 $n_{
m fmap}$ — #(feature map);
 a_{l-1} — action of the previous layer;
 c_{l-1} — expanded channel number of the previous layer.

Qidong Tang HAWIS 21 / 29

3. Action Space:

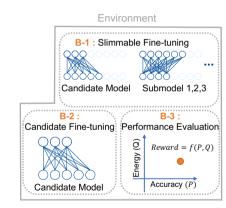
- a_I action for *I*-th layer;
- r_l expansion ratio for l-th layer;
- c_I the actual channel number of I-th layer.

$$r_I = a_I (r_{\text{max}} - r_{\text{min}}) + r_{\text{min}}$$

 $c_I = \text{round} (c_{\text{out}} \cdot r_I/d) \cdot d$

4. Environment:

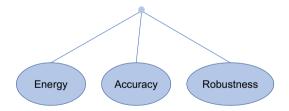
- ▶ B-1): Slimmable training technique updates the super-net for 1 epoch on the training data.
- ▶ B-2): Customized fine-tuning for the candidate model for a few epochs.
- ▶ B-3): Estimate the accuracy and energy consumption of the candidate model on the evaluation data.



Qidong Tang HAWIS 23 / 29

Training and Estimation of the Optimal Model

Train from scratch, estimate the final accuracy, energy consumption and robustness under device defects.



Qidong Tang HAWIS 24 / 29

Table. Comparison of High Bit-width, Uniformly Widened Binarized (U-) and HAWIS networks.

Model	Res-20 CIFAR10		Res-32	CIFAR10	Res-18 ImageNet	
	Energy (μJ)	Acc. (%)	Energy (μJ)	Acc. (%)	Energy (<i>mJ</i>)	Acc. (%)
FP	-	92.1	-	92.8	-	69.6
Quan-8bit	1387	92.2	2349	92.9	66.5	69.8
U-1×	32.7	81.22	50.6	83.91	3.8	51.92
U-2×	120	88.95	195	90.22	8.2	63.38
U-3 $ imes$	238	91.4	393	92.11	15.0	66.57
$U-4 \times$	503	92.17	893	92.49	25.1	68.19
U-5 \times	924	92.77	1571	93.00	43.5	69.22
U-6 \times	1176	92.78	1984	93.07	-	-
HAWIS-A	368	92.42	949	92.91	21.3	68.21
HAWIS-B	849	93.13	1045	93.18	29.4	69.29

- 1. HAWIS models achieve better overall performance, which consume less energy to reach similar accuracy of uniformly widened BNNs.
- 2. On CIFAR-10, HAWIS-A models reach the accuracy of Quan-8bit models. On ImageNet, the accuracy of HAWIS-B is 0.5% lower than that of Quan-8bit model.

Qidong Tang HAWIS 25 / 29

Comparison Against State-of-the-Art Efficient Models

Table. Performance and Complexity Comparison on CIFAR-10.

8/8				
0,0	0	41	-	92.2
1/1	561	11	-	91.2
1/1	1048	2	-	92.98
1/1	670	3	0.42	92.7
1/1	410	30	0.25	93.7
1/1	1100	0	1.25	93.13
	1/1 1/1 1/1	1/1 1048 1/1 670 1/1 410	1/1 1048 2 1/1 670 3 1/1 410 30	1/1 1048 2 - 1/1 670 3 0.42 1/1 410 30 0.25

Table. Performance and Complexity Comparison on ImageNet.

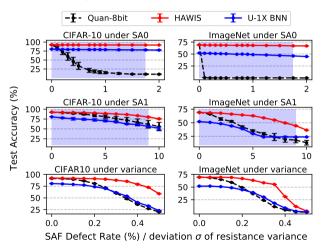
Table. Ferformance and Complexity Companson on imageivet.						
Arch	Precision (W/A)	$_{(\times 10^9)}^{BiOps}$	$\frac{FLOPs}{(\times 10^8)}$	Search Cost (GPU-days)	Top-1 (%)	
Resnet-18 [resnet]	8/8	0	18.2	-	69.8	
Bi-Real-18 [bi-real]	1/1	1.68	1.38	-	56.4	
Bi-Real-34 [bi-real]	1/1	3.53	1.39	-	62.2	
MeliusNet-42 [melius]	1/1	9.69	1.74	-	69.2	
FracBNN [FracBNN]	1/1.4	7.30.	0.01	-	71.8	
BARS [bars]	1/1	2.59	2.54	-	60.3	
BNAS [bnas_zeroise]	1/1	15.30	4.10	0.42	63.5	
BATS [bulat2020bats]	1/1	2.16	1.21	0.25	66.1	
Res18-Auto [4]	1/1	19.40	3.55	60	69.7	
HAWIS	1/1	37.8	0	16	69.3	

- 1. HAWIS on CIFAR-10, with fully binarized layers, outperforms all above efficient models except BATS (many full-precision operations).
- 2. On ImageNet, HAWIS outperforms most manually designed BNNS and Binary NAS methods which still own a large part of FLOPs.

Qidong Tang HAWIS 26 / 29

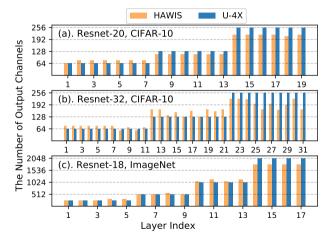
Analysis of the Searched Architecture

Robustness Under Device Defects



- Quan-8bit networks are susceptible to SA0 defects, while binarized models keep stable accuracy under SA0 defects.
- 2. U-1× BNN is more robust than Quan-8bit models under SA1 and resistance variation, while HAWIS further improves the robustness of the binary baseline.

Analysis of the Searched Architecture



- HAWIS architectures commonly possess more channels in the front layers and fewer channels in the tail layers.
- 2. HAWIS has a bottleneck-like structure in ResNet-32.(narrow width for 8/18/28 and larger width for 9/19/29-th layer).
- The selected channel numbers are energy-efficient(full utilization).

Comparison Against High Bit-width and Uniformly Widened Binary Networks Comparison Against State-of-the-Art Efficient Models Robustness Under Device Defects Analysis of the Searched Architecture

Thanks for your listening!

Qidong Tang HAWIS 29 / 29