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Embedded Architecture: Non-volatile memory
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Embedded Architecture: Non-volatile memory
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Widely used in KV store: B+-tree

Internal nodes (IN): 3

Leaf nodes (LN): [[1 |2 3 |[a

Variety of B+-tree on NVM:
FAST-FAIR (FAST’ 18)
Circle-Tree (TC’ 21)



https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9312478

Motivation

Read performance optimization of B+-tree?



Motivation

- Inspired by the cache organization from the previous
researches:

[. Linear search outperforms binary search in a
sorted B+-tree node.
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Motivation

- Inspired by the cache organization from the previous
researches:

[I. Sorted B+-tree nodes contain monotonically
ascending keys.

“Read amplification”
Monotonically ascending

Keys Elﬂ---

Values &a &b &c &d &e &g &h & &



Design

“Read amplification”
Monotonically ascending
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One cache li
Sentinel Array

Each sentinels is the smallest key
in the corresponding cache line




Design

1 Search Key 116

Keys m---

Values &a &b & &d &e & &g &h & &

Lenear m---

search &3 &b &c &d &e &g &h & &

9 1st cache miss» 2nd cache miss» 3 3rd cache miss
4 comparisons 4 comparisons 3 comparisons

Sentinel Array
Search with SA & & &k &l

1st cache miss » > 2nd cache miss
4 comparisons 3 comparisons 9



Design

1 Search Keys in [60, 90)

Keys m---

Values &a &b & &d &e & &g &h & &

Lenear m---

search &3 &b &c &d &e &g &h & &

9 1st cache miss» 2nd cache miss» 3 3rd cache miss
4 comparisons 4 comparisons 1 comparisons

Sentinel Array mm
Search with SA & & &g &h

1st cache miss » 2nd cache miss
56 < keys <97 three keys obtained 10



Evaluation
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Evaluation
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Search performance:
In 40968 size node

FAST-FAIR_S improves 42.6%
Circle-Tree_S improves 48.4%
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Evaluation
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Circle-Tree_F M Circle-Tree_S

Insertion performance
in 4096B size node:
FAST-FAIR_S overhead
4.0%

Circle-Tree_S overhead
6.5%
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Evaluation
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FAST-FAIR FAST-FAIR_F  in 40968 size node:

T FAST-FAIR_S [ Circle-Tree FAST-FAIR_S gets 16.9% improvement
Circle-Tree_F mCircle-Tree_s Circle-Tree_S gets 13.0% improvement
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Conclusion

* We proposed a sentinel array to reduce the read
amplification of searching the ascending B+-tree
sorted node.

* The results show that our design reduces the cache

misses and obtain the performance improvement for
in-NVM B+-tree.

15



Thank you for your listening!



