
Boosting the Search Performance of B+-tree
with Sentinels for Non-volatile Memory

Chongnan Ye, Chundong Wang

ShanghaiTech University, Shanghai, China

1

Embedded Architecture: Non-volatile memory

01

Durable

Low access speed

Not Durable

High access speed

CPU

DRAM

Disk

Cache lines

01

Durable

Low access speed

Durable

High access speed

CPU

NVM

Disk

Cache lines

e.g. Optane DC
App Direct mode

2

Embedded Architecture: Non-volatile memory

01 01
CPU

NVM

Cache lines

clflush, clwb, etc. Large overhead.

3

Widely used in KV store: B+-tree

Leaf nodes (LN):

Internal nodes (IN):

Variety of B+-tree on NVM:
FAST-FAIR (FAST’ 18)
Circle-Tree (TC’ 21)

4

https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9312478

Motivation

Read performance optimization of B+-tree?

5

Motivation

Inspired by the cache organization from the previous
researches:

I. Linear search outperforms binary search in a
sorted B+-tree node.

6

Motivation

Inspired by the cache organization from the previous
researches:

II. Sorted B+-tree nodes contain monotonically
ascending keys.

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Keys

Values

Monotonically ascending
“Read amplification”

7

Design

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Keys

Values

Monotonically ascending
“Read amplification”

One cache line

13 56 97 139Sentinel Array

Each sentinels is the smallest key
in the corresponding cache line 8

Design

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Keys

Values

13 56 97 139

Sentinel Array

Search Key 116

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Lenear
search

①
1st cache miss
4 comparisons

②
2nd cache miss
4 comparisons

③
3rd cache miss
3 comparisons

Search with SA
97 102 116 124

&i &j &k &l

①
1st cache miss
4 comparisons

②
2nd cache miss
3 comparisons 9

Design

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Keys

Values

13 56 97 139

Sentinel Array

Search Keys in [60, 90)

13 24 32 42 56 65 72 83 97 102 116 124 139

&a &b &c &d &e &f &g &h &i &j &k &l &m

Lenear
search

①
1st cache miss
4 comparisons

②
2nd cache miss
4 comparisons

③
3rd cache miss
1 comparisons

Search with SA
56 65 72 83

&e &f &g &h

①
1st cache miss
56 < keys < 97

②
2nd cache miss
three keys obtained 10

Evaluation

System Linux Server

CPU Intel Xeon E5-2620v4 2.10GHz

Caches 512KB/2MB/20MB L1/L2/L3

DRAM(add 300ns write latency to emulate NVM) 8GB

11

Evaluation

Search performance:
In 4096B size node
FAST-FAIR_S improves 42.6%
Circle-Tree_S improves 48.4%

12

Evaluation

Insertion performance
in 4096B size node:
FAST-FAIR_S overhead
4.0%
Circle-Tree_S overhead
6.5%

13

Evaluation

YCSB Search tail latency
in 4096B size node:
FAST-FAIR_S gets 16.9% improvement
Circle-Tree_S gets 13.0% improvement

14

Conclusion

• We proposed a sentinel array to reduce the read
amplification of searching the ascending B+-tree
sorted node.

• The results show that our design reduces the cache
misses and obtain the performance improvement for
in-NVM B+-tree.

15

Thank you for your listening!

16

