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Embedded Architecture: Non-volatile memory
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Embedded Architecture: Non-volatile memory

01 01
CPU

NVM

Cache lines

clflush, clwb, etc. Large overhead.

3



Widely used in KV store: B+-tree

Leaf nodes (LN):

Internal nodes (IN):

Variety of B+-tree on NVM: 
FAST-FAIR (FAST’ 18)
Circle-Tree (TC’ 21)
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https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9312478


Motivation

Read performance optimization of B+-tree?
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Motivation

Inspired by the cache organization from the previous 
researches:

I. Linear search outperforms binary search in a 
sorted B+-tree node.
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Motivation

Inspired by the cache organization from the previous 
researches:

II. Sorted B+-tree nodes contain monotonically 
ascending keys.
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Design
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Design
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Design
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Evaluation

System Linux Server

CPU Intel Xeon E5-2620v4 2.10GHz

Caches 512KB/2MB/20MB L1/L2/L3

DRAM(add 300ns write latency to emulate NVM) 8GB
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Evaluation

Search performance:
In 4096B size node
FAST-FAIR_S improves 42.6%
Circle-Tree_S improves 48.4%
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Evaluation

Insertion performance
in 4096B size node:
FAST-FAIR_S overhead 
4.0%
Circle-Tree_S overhead 
6.5%
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Evaluation

YCSB Search tail latency
in 4096B size node:
FAST-FAIR_S gets 16.9% improvement
Circle-Tree_S gets 13.0% improvement

14



Conclusion

• We proposed a sentinel array to reduce the read 
amplification of searching the ascending B+-tree 
sorted node.

• The results show that our design  reduces the cache 
misses and obtain the performance improvement for 
in-NVM B+-tree.
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Thank you for your listening!
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