Boosting the Search Performance of B+-tree
with Sentinels for Non-volatile Memory

Chongnan Ye, Chundong Wang

ShanghaiTech University, Shanghai, China

Embedded Architecture: Non-volatile memory

N 4
[Cache lines }

. 4

S
=

—

—

~ Not Durable

_ High access speed

— Durable

— Low access speed

N 4
[Cache lines }

. 4

e
e

—

—

e.g. Optane DC
App Direct mode

~ Durable

— High access speed

— Durable

~ Low access speed

Embedded Architecture: Non-volatile memory

e

h

[Cache lines }

clflush, clwb, etc. Large overhead.
A 4

Widely used in KV store: B+-tree

Internal nodes (IN): 3

Leaf nodes (LN): [[1 |2 3 |[a

Variety of B+-tree on NVM:
FAST-FAIR (FAST’ 18)
Circle-Tree (TC’ 21)

https://www.usenix.org/system/files/conference/fast18/fast18-hwang.pdf
https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9312478

Motivation

Read performance optimization of B+-tree?

Motivation

- Inspired by the cache organization from the previous
researches:

[. Linear search outperforms binary search in a
sorted B+-tree node.

__04
g []

HE 1
g 03 oo
@ |
5 02 o

|
@ | |
p 01 e
|- |
g D I-I.I
<C

Node Size

[1B+Tree_Linear [B+Tree_Binary

Motivation

- Inspired by the cache organization from the previous
researches:

[I. Sorted B+-tree nodes contain monotonically
ascending keys.

“Read amplification”
Monotonically ascending

Keys Elﬂ---

Values &a &b &c &d &e &g &h & &

Design

“Read amplification”
Monotonically ascending

OO 13 | 24 |32 | 42| 56 | 65 72 |83 97 11021116]1241139| | |

Values &a \%b\&c &d &e &f &g & & & &k &m
\ /
|
One cache li
Sentinel Array

Each sentinels is the smallest key
in the corresponding cache line

Design

1 Search Key 116

Keys m---

Values &a &b & &d &e & &g &h & &

Lenear m---

search &3 &b &c &d &e &g &h & &

9 1st cache miss» 2nd cache miss» 3 3rd cache miss
4 comparisons 4 comparisons 3 comparisons

Sentinel Array
Search with SA & & &k &l

1st cache miss » > 2nd cache miss
4 comparisons 3 comparisons 9

Design

1 Search Keys in [60, 90)

Keys m---

Values &a &b & &d &e & &g &h & &

Lenear m---

search &3 &b &c &d &e &g &h & &

9 1st cache miss» 2nd cache miss» 3 3rd cache miss
4 comparisons 4 comparisons 1 comparisons

Sentinel Array mm
Search with SA & & &g &h

1st cache miss » 2nd cache miss
56 < keys <97 three keys obtained 10

Evaluation

11

Evaluation

= N
o U B U1 N U

o

Average Latency(us)

o r Iy

VI WL W WL

512B 1024B 2048B 4096B
Node Size

[J FAST-FAIR E FAST-FAIR_F
[FAST-FAIR_S [Circle-Tree
Circle-Tree_F M Circle-Tree_S

Search performance:
In 40968 size node

FAST-FAIR_S improves 42.6%
Circle-Tree_S improves 48.4%

12

Evaluation

6

—
W
=
>
(&)
c
Q
hd
O
el
Q
o0
1)
|
Q
>
<L

|
|

O D e D e T e |

s L
)

)

N

N
HI

512B 1024B 2048B 4096B
Node Size

FAST-FAIR [FAST-FAIR_F
1FAST-FAIR_S [OCircle-Tree

Circle-Tree_F M Circle-Tree_S

Insertion performance
in 4096B size node:
FAST-FAIR_S overhead
4.0%

Circle-Tree_S overhead
6.5%

13

Evaluation

e |

(SIS SIS

o
'
o
o |
Al
|
Nl
'
o
'
o
I

LN U
512B 1024B 2048B 4096B
Node Size

o

YCSB Search tail latency
FAST-FAIR FAST-FAIR_F in 40968 size node:

T FAST-FAIR_S [Circle-Tree FAST-FAIR_S gets 16.9% improvement
Circle-Tree_F mCircle-Tree_s Circle-Tree_S gets 13.0% improvement

14

Conclusion

* We proposed a sentinel array to reduce the read
amplification of searching the ascending B+-tree
sorted node.

* The results show that our design reduces the cache

misses and obtain the performance improvement for
in-NVM B+-tree.

15

Thank you for your listening!

