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• Neural architecture search (NAS):
– Algorithm-level optimization: better neural architectures

• Reconfigurable accelerator
– Hardware-level optimization: higher hardware efficiency

• Suboptimality when both techniques are not considered jointly
– Design of neural architecture space needs to consider the 

characteristics of hardware accelerators.

Motivation

2



• Large co-design space
– Millions of design points in ResNet-101

• Expensive training cost
– Several hours for large neural networks (ResNet-101) and 

datasets (ImageNet) even on high-end GPUs 

• Time-consuming hardware implementation 
– Runtime cost of synthesis and place&route is expensive

Challenges
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1. A novel co-design framework for reconfigurable CNN designs 
– Evolutionary algorithm for design space exploration
– Decoupling network training from design optimization 

process to reduce training cost

2. Gaussian process (GP)-based estimators
– Avoid time-consuming synthesis and place&route

3. Comprehensive comparisons
– with various co-design methods

Contributions

4



• Auto machine learning: Optimize 
hyperparameters of neural 
architecture:
– Number of channels
– Number of layers
– Operations
– Connection between layers

Background: NAS
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• A supervised learning approach
– Regression
– Probabilistic classification (confidence intervals)

• A generalization of the Gaussian probability
– Distribution of functions instead of vectors

• Parameterized by
– Mean function: Usually set as zero
– Covariance function: Defining the prior properties of the 

functions

Background: Gaussian Process
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• Population-based optimization algorithm inspired by 
biological evolution

• Contain five stages for iterative optimization
• Parameterized by population size, parent size, mutate 

probability and cross over probability 

Background: Evolutionary Algorithm
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• Three-phase co-design framework
• General enough for any reconfigurable CNN accelerators

Co-Design Framework: Overview
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• Hardware Architecture Space
– One single reconfigurable 

engine for different layers
– Off-chip memory to cache 

intermediate results
– Reconfigurable parameters:

• Parallelism along channel (PC), 
filter(PF) and vector (PV)

• Memory size
• Bandwidth

Co-Design Framework: Phase One 
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• Neural Architecture Space (Supernet)
– ResNet Backbone with five blocks
– Optimize: number of units, number of channels and 

connections between layers
– Train supernet using progressive shrinking

Co-Design Framework: Phase One 
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• Estimation for training loss
– Encode neural architectures (channel number, filter 

number…..) as vectors for numerical analysis

• Estimation for latency and energy consumption
– Encode neural architecture as well as hardware 

parameters (parallelism level in different dimensions, 
buffer sizes and bandwidth) for regression

Co-Design Framework: Phase Two 
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• Explore co-design space
– Evolutionary algorithm
– Represent design points using encoded genes
– Flexibility: User-defined parameters

• Quantization
– Reduce the bandwidth and memory requirements
– Optional according to the availability in hardware

Co-Design Framework: Phase Three 
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• Trade-off between algorithmic and hardware performance
– Parameterized objective function
– Set different optimization priorities
– Penalty: resource usage exceeds the budget 

Co-Design Framework: Phase Three 
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• Hardware implementation
– Intel Arria 10SX 660 platform
– Verilog HDL, 225 MHz

• Optimization Framework
– Python 3.6, PyTorch 1.9 and Gpytorch 1.5

• Image classification on ImageNet
– 1000 objects

Experiment: Setup
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Experiment: Accuracy of GP-based Estimators
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Kernel Function Mean Absolute Error
Loss 

Estimator
Matern (3/2) 0.01005

Latency 
Estimator

Matern (5/2) 0.06521 ms

Energy
Estimator

Matern (5/2) 0.01804 W

• 1500 samples for training, 500 samples for evaluation
• Adam optimizer, 50 iterations



• Three different 
optimization settings
– Opt-Accuracy
– Opt-Power
– Opt-Latency

• Effectively find the Pareto 
frontier
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Experiment: Effectiveness of Co-design Framework



Experiment: Comparison with CPU and GPU

17

CPU GPU FPGA

Acc
(%)

Latency
(ms)

Energy 
Eff.

(FPS/W)

Latency
(ms)

Energy 
Eff.

(FPS/W)

Latency
(ms)

Energy 
Eff.

(FPS/W)

Opt
Acc

26.08 0.28 7.40 0.94 4.52 5.07 77.63

Opt
Energy

24.06 0.30 6.57 1.06 4.66 6.27 76.30

Opt
Lat

19.18 0.38 5.03 1.38 3.14 7.32 74.91

• Higher energy efficiency and lower latency



Experiment: Comparison with Handcrafted CNNs
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• Higher accuracy under same latency constraint
• Faster under same accuracy constraint



Experiment: Comparison with Other Approaches
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Platform # of DSP Latency 
(ms)

Accuracy Energy Eff. 
(GOPS/W)

Co-Explore Xilinx 
XC7Z015

150 95.24 70.24% 0.74

HAO Xilinx ZU3EG 360 22.27 72.68% -
EDD Xilinx ZCU102 2520 7.96 74.60% -
OFA Xilinx ZU9EG 2520 3.30 73.60% -

Our Work Intel GX1150 1345 3.66 76.30% 6.27

• Higher accuracy
• Higher energy efficiency



• Extend the framework to support other DNNs
– Bayesian neural networks, Recurrent neural networks

• Improve the hardware architecture to support more operations
– More general and efficient

• Automatic sparsity exploitation
– Structured and unstructured sparsity

Future Work
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1. A novel co-design framework for reconfigurable CNN designs 
– Evolutionary algorithm for design space exploration
– Decoupling network training from co-design optimization 

process to reduce training cost

2. Gaussian process (GP)-based estimators
– Avoid time-consuming synthesis and place&route

3. Comprehensive comparisons
– Higher accuracy, Lower latency, Higher energy-efficiency

Summary
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