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Motivation

* Neural architecture search (NAS):
— Algorithm-level optimization: better neural architectures

* Reconfigurable accelerator
— Hardware-level optimization: higher hardware efficiency

*  Suboptimality when both techniques are not considered jointly

— Design of neural architecture space needs to consider the
characteristics of hardware accelerators. L [2)



Challenges

» Large co-design space
— Millions of design points in ResNet-101

« Expensive training cost

— Several hours for large neural networks (ResNet-101) and
datasets (ImageNet) even on high-end GPUs

* Time-consuming hardware implementation
— Runtime cost of synthesis and place&route is expensn. g’



Contributions

1. A novel co-design framework for reconfigurable CNN designs
— Evolutionary algorithm for design space exploration

— Decoupling network training from design optimization
process to reduce training cost

2. Gaussian process (GP)-based estimators
— Avoid time-consuming synthesis and place&route

3. Comprehensive comparisons
— with various co-design methods



Background: NAS " Neural
Architecture

. . . Space
* Auto machine learning: Optimize

hyperparameters of neural
architecture:

— Number of channels

— Number of layers

— Operations

— Connection between layers

Optimize

— R




Background: Gaussian Process

* A supervised learning approach

— Regression

— Probabilistic classification (confidence intervals)
* A generalization of the Gaussian probability

— Distribution of functions instead of vectors
« Parameterized by

— Mean function: Usually set as zero

— Covariance function: Defining the prior properties of the
functions C
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Background: Evolutionary Algorithm

Population-based optimization algorithm inspired by
biological evolution

Contain five stages for iterative optimization

Parameterized by population size, parent size, mutate
probability and cross over probability

[ 1. Population Generation ]

[2. Evaluaton] 7~ N [ 5. Mutation ]

Evolving
[ 3. Selection | [ 4. Crossover ]




Co-Design Framework: Overview

* Three-phase co-

design framework

« General enough for any reconfigurable CNN accelerators

Phase 1: Specify and Train

Phase 3: Exploration
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Co-Design Framework: Phase One

« Hardware Architecture Space
— One single reconfigurable

engine for different layers

Input Data Weight
— Off-chip memory to cache |l o L B
: ' Memory « g ll ll
iIntermediate results ‘ Reconfigurable Conv
Engine (PV, PC PF)
— Reconfigurable parameters: Tail Units (ReLU, Pool, SC)

 Parallelism along channel (PC),
filter(PF) and vector (PV)

* Memory size
« Bandwidth -



Co-Design Framework: Phase One

* Neural Architecture Space (Supernet)
— ResNet Backbone with five blocks

— Optimize: number of units, number of channels and
connections between layers

— Train supernet using progressive shrinking

/
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Co-Design Framework: Phase Two

 Estimation for training loss

— Encode neural architectures (channel number, filter
number.....) as vectors for numerical analysis

-+ Estimation for latency and energy consumption

— Encode neural architecture as well as hardware
parameters (parallelism level in different dimensions,
buffer sizes and bandwidth) for regression
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Co-Design Framework: Phase Three

» Explore co-design space
— Evolutionary algorithm
— Represent design points using encoded genes
— Flexibility: User-defined parameters

* Quantization
— Reduce the bandwidth and memory requirements
— Optional according to the availability in hardware
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Co-Design Framework: Phase Three

+ Trade-off between algorithmic and hardware performance
— Parameterized objective function
— Set different optimization priorities
— Penalty: resource usage exceeds the budget

L=nxCFE+ ux Latency + X X Energy + Respr

Pes . 07 DSPused, S DSPavlaMEMused S MEMa,vl
P s DSPused > DSPavlaMEMused > MEMavl
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Experiment: Setup

- Hardware implementation
— Intel Arria 10SX 660 platform
— Verilog HDL, 225 MHz

* Optimization Framework
— Python 3.6, PyTorch 1.9 and Gpytorch 1.5

* Image classification on ImageNet
— 1000 objects
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Experiment: Accuracy of GP-based Estimators

« 1500 samples for training, 500 samples for evaluation
* Adam optimizer, 50 iterations

_ Kernel Function Mean Absolute Error

Loss Matern (3/2) 0.01005
Estimator
Latency Matern (5/2) 0.06521 ms
Estimator
Energy Matern (5/2) 0.01804 W
Estimator
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Experiment: Effectiveness of Co-design Framework

* Three different 1-0.05, N-1.0 t44.0
optimization settings [ A-0.001 ] R . [ 43

— Opt-Accuracy .’t" | 43_'6-' 2

— Opt-Power . 434 2

— Opt-Latency ‘ B2
43.0

+ Effectively find the Pareto — [u-o,z,{.u)] 15
frontier 0.90 20001 L 45" &
0.95 40 & 8
0 '/

Loss 1.05
1.10 3



Experiment: Comparison with CPU and GPU

* Higher energy efficiency and lower latency

| CcPU_ | GPU | _FPGA

Latency Energy Latency Energy Latency Energy
(ms) Eff. (ms) Eff. (ms) Eff.
(FPS/W) (FPS/W) (FPS/W)

Opt 26.08 0.28 7.40 0.94 4.52 5.07 77.63
Acc

Opt 24.06 0.30 6.57 1.06 4.66 6.27 76.30
Energy

Opt 19.18 0.38 5.03 1.38 3.14 7.32 76/ )
Lat 2
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Experiment: Comparison with Handcrafted CNNs

» Higher accuracy under same latency constraint
« Faster under same accuracy constraint
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Experiment: Comparison with Other Approaches
* Higher accuracy
* Higher energy efficiency

# of DSP Latency Accuracy | Energy Eff.
(ms) (GOPS/W)

Co-Explore Xilinx 95.24 70.24% 0.74
XC72015
HAO Xilinx ZU3EG 360 22.27 72.68% -
EDD Xilinx ZCU102 2520 7.96 74.60% -
OFA Xilinx ZU9EG 2520 3.30 73.60%
Our Work Intel GX1150 1345 3.66 76.30% 6.87 ﬂ\




Future Work

« Extend the framework to support other DNNs
— Bayesian neural networks, Recurrent neural networks

* Improve the hardware architecture to support more operations
— More general and efficient

* Automatic sparsity exploitation
— Structured and unstructured sparsity



Summary

1. A novel co-design framework for reconfigurable CNN designs

— Evolutionary algorithm for design space exploration

— Decoupling network training from co-design optimization
process to reduce training cost

2. Gaussian process (GP)-based estimators
— Avoid time-consuming synthesis and place&route

3. Comprehensive comparisons
— Higher accuracy, Lower latency, Higher energy-efficiency



